Inequalities pp 329-341 | Cite as

A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator

  • Dirk Hundertmark
  • Elliott H. Lieb
  • Lawrence E. Thomas

Abstract

We give a proof of the Lieb-Thirring inequality in the critical case d=1, γ = 1/2, which yields the best possible constant.

Keywords

Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Aizenmann and E. H. Lieb: On semi-classical bounds for eigenvalues of Schrödinger operators. Phys. Lett. 66A (1978), 427–429.Google Scholar
  2. [2]
    M. S. Birman: The spectrum of singular boundary problems. Mat. Sb. 55 No. 2 (1961), 125–174, translated in Amer. Math. Soc. Trans. (2), 53 (1966), 23-80.MathSciNetGoogle Scholar
  3. [3]
    J. G. Conlon: A new proof of the Cwikel-Lieb-Rosenbljum bound. Rocky Mountain J. Math., 15, no.1 (1985), 117–122.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    M. Cwikel: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Trans. AMS, 224 (1977), 93–100.MathSciNetGoogle Scholar
  5. [5]
    L. D. Landau and E. M. Lifshitz: Quantum Mechanics. Non-relativistic theory. Volume 3 of Course of Theoretical Physics, Pergamon Press (1958)Google Scholar
  6. [6]
    P. Li and S.-T. Yau: On the Schrödinger equation and the eigenvalue problem. Comm. Math. Phys., 88 (1983), 309–318.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    E. H. Lieb: The number of bound states of one body Schrödinger operators and the Weyl problem. Bull. Amer. Math. Soc., 82 (1976), 751–753. See also Proc. A.M.S. Symp. Pure Math. 36 (1980), 241-252.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    E. H. Lieb and M. Loss: Analysis. Graduate Studies in Mathematics 14, American Mathematical Society 1997.Google Scholar
  9. [9]
    E. H. Lieb and W. Thirring: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett., 35 (1975), 687–689. Errata 35 (1975), 1116.CrossRefGoogle Scholar
  10. [10]
    E. H. Lieb and W. Thirring: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. Studies in Math. Phys., Essays in Honor of Valentine Bargmann, Princeton (1976)Google Scholar
  11. [11]
    G. V. Rozenbljum: Distribution of the discrete spectrum of singular differential operators. Dokl. AN SSSR, 202, N 5 1012–1015 (1972), Izv. VUZov, Matematika, N. 1(1976), 75-86.MathSciNetGoogle Scholar
  12. [12]
    M. Reed and B. Simon: Methods of modern mathematical physics IV: Analysis of operators. Academic Press, New York 1978.MATHGoogle Scholar
  13. [13]
    J. Schwinger: On the bound states of a given potential. Proc. Nat. Acad. Sci. U.S.A. 47, (1961), 122–129.MathSciNetCrossRefGoogle Scholar
  14. [14]
    B. Simon: Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton Series in Physics, Princeton University press, New Jersey, 1971.Google Scholar
  15. [15]
    B. Simon: The bound state of weakly coupled Schrdinger operators in one and two dimensions. Ann. Physics 97, no. 2, (1976), 279–288.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    W. Thirring: A course in mathematical physics. Vol. 3. Quantum mechanics of atoms and molecules. Translated from the German by Evans M. Harrell. Lecture Notes in Physics, 141. Springer-Verlag, New York-Vienna, 1981.Google Scholar
  17. [17]
    T. Weidl: On the Lieb-Thirring constants L γ 1 for γ ≥ 1/2. Comm. Math. Phys., 178, no. 1, (1996), 135–146.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Dirk Hundertmark
    • 1
  • Elliott H. Lieb
    • 1
  • Lawrence E. Thomas
    • 1
  1. 1.Department of Physics and MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations