Inequalities pp 317-328 | Cite as

Kinetic Energy Bounds and their Application to the Stability of Matter

  • Elliott H. Lieb


he Sobolev inequality on Rn,n ≥ 3 is very important because it gives a lower bound for the kinetic energy f| ∇f|2 in terms of an L p norm of f.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Aizenman and E.H. Lieb, On semiclassical bounds for eigenvalues of Schrödinger operators, Phys. Lett. 66k, 427–429 (1978).MathSciNetGoogle Scholar
  2. [2]
    J. Conlon, E.H. Lieb and H.-T. Yau, The N 7/5 law for bosons, Commun. Math. Phys. (submitted).Google Scholar
  3. [3]
    M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. Math. 106, 93–100 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    I. Daubechies, Commun. Math. Phys. 90, 511–520 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    F.J. Dyson, Ground state energy of a finite systems of charged particles, J. Math. Phys. 8, 1538–1545 (1967).MathSciNetCrossRefGoogle Scholar
  6. [6]
    E.H. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, A.M.S. Proc. Symp. in Pure Math. 36, 241–251 (1980). The results were announced in Bull. Ann. Math. Soc. 82, 751-753 (1976).MathSciNetCrossRefGoogle Scholar
  7. [7]
    E.H. Lieb, An L p bound for the Riesz and Bessel potentials of orthonormal functions, J. Funct. Anal. 51, 159–165 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    E.H. Lieb, On characteristic exponents in turbulence, Commun. Math. Phys. 92, 473–480 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    E.H. Lieb and M. Loss, Stability of Coulomb systems with magnetic fields: II. The many-electron atom and the one-electron molecule, Commun. Math. Phys. 104, 271–282 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    E.H. Lieb and W.E. Thirring, Bounds for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett. 35, 687–689 (1975). Errata 35, 1116 (1975).CrossRefGoogle Scholar
  11. [11]
    E.H. Lieb and W.E. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities” in Studies in Mathematical Physics (E. Lieb, B. Simon, A. Wightman eds.) Princeton University Press, 1976, pp. 269–304.Google Scholar
  12. [12]
    E.H. Lieb and W.E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. of Phys. (NY) 155, 494–512 (1984).MathSciNetCrossRefGoogle Scholar
  13. [13]
    E.H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys. 112, 147–174 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    G.V. Rosenbljum, Distribution of the discrete spectrum of singular differential operators. Dokl. Akad. Nauk SSSR 202, 1012–1015 (1972). (MR 45 # 4216). The details are given in Izv. Vyss. Ucebn. Zaved. Matem. 164, 75-86 (1976). (English trans. Sov. Math. (Iz VUZ) 20, 63-71 (1976).)MathSciNetGoogle Scholar
  15. [15]
    E.H. Lieb and H.T. Yau, The stability and instability of relativistic matter, Commun. Math. Phys. 118, 177–213 (1988). For a short summary see: Many body stability implies a bound on the fine structure constant, Phys. Rev. Lett. 61, 1695-1697 (1988).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations