Advertisement

Inequalities pp 141-145 | Cite as

Inequalities for Some Operator and Matrix Functions

  • Elliott H. Lieb

Abstract

In this note we generalize an inequality on determinants (Corollary 3 below) recently proved by Seiler and Simon [1] in connection with some estimates in quantum field theory. Our main result is Lemma 1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Seiler and B. Simon, An inequality among determinants, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 3277–3278.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    D. E. Littlewood, “The Theory of Group Characters and Matrix Representations of Groups,” Oxford University Press, 1940.Google Scholar
  3. 3.
    M. Marcus and H. Minc, “A Survey of Matrix Theory and Matrix Inequalities,” Prindle, Weber and Schmidt, Boston, 1964.zbMATHGoogle Scholar
  4. 4.
    E. H. Lieb and M. B. Ruskai, Some operator inequalities of the Schwarz type, Adv. in Math. 12 (1974), 269–273. Cf. Theorem 1.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    S. Yu. Rotfel’d, Remarks on the singular numbers of the sum of completely continuous operators, Funct. Anal. Appl. Consultants Bureau Trans. 1 (1967), 252–253.MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Yu. Rotfel’d, The singular numbers of the sum of completely continuous operators, “Topics in Math. Phys.” (M. Sh. Birman, Ed.), Consultants Bureau Trans. 3 (1969), 73–78.Google Scholar
  7. 7.
    R. Merris, Inequalities for matrix functions, J. Algebra 22 (1972), 451–460.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    R. Merris and J. A. Dias Da Silva, Generalized Schur functions, J. Algebra 35 (1975), 442–448.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations