Advertisement

Inequalities pp 113-134 | Cite as

Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture

  • Elliott H. Lieb

Abstract

Several convex mappings of linear operators on a Hilbert space into the real numbers are derived, an example being A → — Tr exp(L + In A). Some of these have applications to physics, specifically to the Wigner—Yanase—Dyson conjecture which is proved here and to the strong subadditivity of quantum mechanical entropy which will be proved elsewhere.

Keywords

Hilbert Space Strong Subadditivity Finite Dimensional Hilbert Space Nonnegative Real Finite Dimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. Wigner and M. M. Yanase, Information content of distributions, Proc. Nat. Acad. Sci. U.S.A. 49 (1963), 910–918. See also E. P. WIGNER AND M. M. YANASE, On the positive semidefinite nature of certain matrix expressions, Canad. J. Math. 16 (1964), 397-406.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    D. W. Robinson and D. Ruelle, Mean entropy of states in classical statistical mechanics, Commun. Math. Phys. 5 (1967), 288–300.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    O. E. Lanford, III, and D. W. ROBINSON, Mean entropy of states in quantum statistical mechanics. J. Math. Phys. 9 (1968), 1120–1125.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    H. Araki and E. H. Lieb, Entropy inequalities, Commun. Math. Phys. 18 (1970), 160–170.MathSciNetCrossRefGoogle Scholar
  5. 5.
    E. H. Lieb and M. B. Ruskai, Proof of the strong subadditivity of quantum mechanical entropy, Dec. 1973. J. Math. Phys. See also A fundamental property of quantum mechanical entropy, Phys. Rev. Lett. 30 (1973), 434-436.Google Scholar
  6. 6.
    J. Bendat and S. Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc. 79 (1955), 58–71. F. KRAUSS, Math. Z. 41 (1936), 18.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    R. T. Rockafellar, “Convex Analysis,” Princeton University, Princeton, NJ, 1970, cf. Theorem 15.3.zbMATHGoogle Scholar
  8. 8.
    The idea of representing A 1 in this manner is due to A. UHLMANN, Endlich Dimensionale Dichtermatrizen II, Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Natur. Reihe 22 Jg. (1973) H. 2, 139–177.MathSciNetGoogle Scholar
  9. 9.
    F. Baumann and R. Jost, Remarks on a conjecture of Robinson and Ruelle concerning the quantum mechanical entropy, in “Problems of Theoretical Physics; Essays Devoted to N. N. Bogoliubov,” pp. 285–293, Nauka, Moscow, 1969Google Scholar
  10. 10.
    F. Baumann, Bemerkungen Ueber Quantenmechanische Entropie Ungleichungen, Helv. Phys. Acta 44 (1971), 95–100.MathSciNetGoogle Scholar
  11. 11.S. Golden, Lower bounds for the Helmhotz function, Phys. Rev. 137 (1965), B 1127–1128.MathSciNetCrossRefGoogle Scholar
  12. 12.
    C. J. Thompson, Inequality with applications in statistical mechanics, J. Math. Phys. 6 (1965), 1812–1813.CrossRefGoogle Scholar
  13. 13.
    M. B. Ruskai, Inequalities for traces on Von Neumann algebras, Commun. Math. Phys. 26 (1972), 280–289; M. BREITENBECKER AND H. R. GRUEMM, Note on trace inequalities, Commun. Math. Phys. 26 (1972), 276-279.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    H. Epstein, Remarks on two theorems of E. Lieb, Commun. Math. Phys., 31, (1973) 317–325.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesFrance

Personalised recommendations