Advertisement

Commentaries

  • Michael Loss
  • Mary Beth Ruskai

Abstract

The subject of ‘inequalities’ was first systematically established by Hardy, Littlewood and P61ya in their book of the same name. The goal, loosely speaking, is to search for an inequality between algebraic or analytic expressions of certain variables that becomes an equality in certain (possibly limiting) cases. The reader may think of Holder’s inequality as an example, but also such things as the dependence upon its shape of the lowest frequency of a drum.

Keywords

Coherent State Isoperimetric Inequality Logarithmic Sobolev Inequality Sharp Constant Schr6dinger Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1Li]
    Almgren, F. and Lieb, E.H.: Symmetric Decreasing Rearrangement is Sometimes Continuous, Jour. Amer. Math. Soc. 2, 683–773 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [ANW]
    Adkins, G., Nappi, C. and Witten, E.: Static properties of nucleons in the Skyrme model, Nucl. Phys. B228, 552–566 (1983).CrossRefGoogle Scholar
  3. [Bab]
    Babenko Izv. Akad. Nauk SSR Ser. Mat. 25, 531–542, 1961, English. transi. Am. Math. Soc. Transi. (2) 44, 115-128 (1965).MathSciNetzbMATHGoogle Scholar
  4. [Bar]
    Barthe, F.: Optimal Young’s inequality and its converse: a simple proof, Geom. Funct. Anal. 8, 234–242 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [Bau]
    Baumann, F.: Bemerkungen über quantenmechanische Entropie-Ungleichungen, Helv. Phys. Acta 44, 95–100 (1971).MathSciNetGoogle Scholar
  6. [BaFe]
    Battle, G. A. and Federbush, P.: A phase cell cluster expansion for Euclidean field theories, Ann. Physics 142, 95–139 (1982).MathSciNetCrossRefGoogle Scholar
  7. [Bel]
    Bell, J.: Speakable and unspeakable in quantum mechanics, Cambridge University Press, 1987, see especially pp 139-158.Google Scholar
  8. [Bek]
    Beckner, W.: Inequalities in Fourier Analysis, Ann. Math. 102, 159–182, (1975).Google Scholar
  9. [Bek2]
    Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math. 138, 213–242 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  10. [Ber]
    Berezin, F.: Convex functions of operators, Mat. Sb. 88, 268–276 (1972). (Russian)MathSciNetGoogle Scholar
  11. [BK]
    Boel, R. J.; Kasteleyn, P. W.: Correlation-function identities and inequalities for Ising models with pair interactions, Commun. Math. Phys. 61, 191–208 (1978).MathSciNetCrossRefGoogle Scholar
  12. [BL]
    Baym, G. and Leggett, A. J.: Exact upper bound on barrier penetration probabilities in many-body systems: application to “cold fusion”. Phys. Rev. Lett. 63, 191–194 (1989).CrossRefGoogle Scholar
  13. [Bo]
    Borell, C.: Geometric properties of some familiar diffusions in ℝn;. Ann. Probab. 21, 482–489 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  14. [BN]
    Brézis, H. and Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36, 437–477 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  15. [BR]
    Bratteli, O. and Robinson, D. W.: Operator Algebras and Quantum Statistical Mechanics, Vol 2, second edition, Springer Verlag (1996). See Notes and Remarks on Sections 6.2.3, 6.2.4, page 435.Google Scholar
  16. [BS]
    Blanchard, Ph. and Stubbe, J.: Bound states for Schrödinger Hamiltonians: phase space methods and applications, Rev. Math. Phys. 8, no. 4, 503–547 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  17. [Bu]
    Burchard, A.: Steiner symmetrization is continuous in W1,p. Geom. Funct. Anal.7, 823–860 (199MathSciNetzbMATHCrossRefGoogle Scholar
  18. [CaLo]
    Carlen, E.A. and Loss, M.: Extremals of functionals with competing symmetries, J. Funct. Anal. 88, 437–456 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  19. [CaLo2]
    Carlen, E.A. and Loss, M.: Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on Sn, GAFA 2, 90–104 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  20. [Ch]
    Choi M.-D.: A Schwarz inequality for positive linear maps on C*-algebras, 111. J. Math. 18, 565–574 (1974).zbMATHGoogle Scholar
  21. [Chi]
    Chiti, G.: Rearrangement of functions and convergence in Orlicz spaces, Appl. Anal. 9, 23–27 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  22. [C1]
    Clarkson, J.A.: Uniformly convex spaces, Trans. Am. Math. Soc. 40, 396–414, (1936).MathSciNetCrossRefGoogle Scholar
  23. [CMS]
    Cordero-Erausquin, D., McCann, R. J. and Schmuckenschläger, M.: A Riemannian interpolation inequality à 1a Borell, Brascamp and Lieb. Invent. Math. 146, 219–257 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  24. [Co]
    Conlon, J.: Semi-classical limit theorems for Hartree-Fock theory, Commun. Math.Phys. 88, 133–150 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  25. [Cor]
    Coron, J-M.: The continuity of rearrangement in W1,p(ℝ), Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 11, 57–85 (1984).MathSciNetzbMATHGoogle Scholar
  26. [CraTa]
    Crandall, M.G. and Tartar, L.: Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc. 78, 385–390 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  27. [Cw]
    Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. Math. 106, 93–100 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  28. [CGM]
    Coleman, S., Glaser, V. and Martin, A.: Action minima among solutions to a class of Euclidean scalar field equations, Commun. Math. Phys. 58, 211–221, (1978).MathSciNetCrossRefGoogle Scholar
  29. [DaLi]
    Daubechies, I. and Lieb, E.H.: One Electron Relativistic Molecules with Coulomb Interaction, Commun. Math. Phys. 90, 497–510 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  30. [DL]
    Dyson, F.J. and Lenard, A. Stability of Matter I., J. Math. Phys. 8, 423–434, (1967) and Stability of Matter II., J. Math. Phys. 9, 698-711, (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  31. [Gl]
    Glimm J.: Bose fields with nonlinear self-interaction in two dimensions, Commun. Math. Phys. 8, 12–25, (1968).zbMATHCrossRefGoogle Scholar
  32. [Gr]
    Gross, L.: Logarithmic Sobolev inequalities, Amer. J. Math. 97 1061–1083, (1976).zbMATHCrossRefGoogle Scholar
  33. [Hai]
    Haiman, M.: Hecke algebra characters and immanant conjectures, J. Amer. Math. Soc. 6, 569–595 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  34. [Ha]
    Hanner, O.: On the uniform convexity of L p and l p, Ark. Math. 3, 239–244, (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  35. [Har]
    Harper, L.H.: Stirling behavior is asymptotically normal, Ann. Math. Statist. 38, 410–414, (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  36. [Hi]
    Hilden K.: Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math. 18, 215–235 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  37. [HK]
    Hohenberg, P. and Kohn W.: Inhomogeneous electron gas, Phys. Rev. B 136, 864–871 (1964)MathSciNetCrossRefGoogle Scholar
  38. [LaWei]
    Laptev, A. and Weidl, T.: Sharp Lieb-Thirring inequalities in high dimensions, Acta Math. 184, 87–111 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  39. [Lil]
    Lieb, E.H.: The Stability of Matter, Rev. Mod. Phys. 48, 553–569 (1976).MathSciNetCrossRefGoogle Scholar
  40. [Li2]
    Lieb, E.H.: A Lower Bound for Coulomb Energies, Phys. Lett. 70A, 444–446 (1979).MathSciNetGoogle Scholar
  41. [Li3]
    Lieb, E.H.: Remarks on the Skyrme Model, in Proceedings of the Amer. Math. Soc. Symposia in Pure Math.54, part 2, 379–384 (1993). (Proceedings of Summer Research Institute on Differential Geometry at UCLA, July 8-28, 19MathSciNetCrossRefGoogle Scholar
  42. [LiLe]
    Lieb, E.H. and Lebowitz, J.L.: The Constitution of Matter: Existence of Thermodynamics for Systems Composed of Electrons and Nuclei, Adv. in Math. 9, 316–398 (1972).MathSciNetCrossRefGoogle Scholar
  43. [LiLo]
    Lieb, E.H. and Loss, M.: Analysis, Second Edition, Graduate Studies in Mathematics, American Mathematical Society, Providence,Rhode Island, 2000.Google Scholar
  44. [Lio]
    Lions. P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I., Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984). The concentration-compactness principle in the calculus of variations. The locally compact case. II., Ann. Inst. H. Poincaré Anal. Non Linéaire l, 223-283 (1984). no. 4zbMATHGoogle Scholar
  45. [LM]
    Lieb, E. H. and Mattis, D.: Mathematical Physics in One Dimension, Academic Press, 1966.Google Scholar
  46. [LR]
    Lanford III, O. E. and Robinson, D. W.: Mean entropy of states in quantum statistical mechanics, J. Math. Phys. 9, 1120–1125 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  47. [LT]
    Lieb, E.H. and Thirring, W.E.: Bound for the kinetic energy of fermions which proves the Stability of Matter, Phys. Rev. Lett. 35, 687–689 (1975), Errata 35, 1116 (1975).CrossRefGoogle Scholar
  48. [LW]
    Lieb, E.H. and Wu, F.Y.: Absence of Mott Transition in an Exact Solution of the Short-Range One-Band Model in One Dimension, Phys. Rev. Lett. 20, 1445–1448 (1968).CrossRefGoogle Scholar
  49. [Ma]
    Mandelbrot, B.: The fractal geometry of nature, W.H. Freeman, revised edition (1983), p. 140.Google Scholar
  50. [Me]
    Merris, R.: Inequalities for matrix functions, J. Algebra 22, 451–460 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  51. [Mir]
    Mironescu, P.: Les minimiseurs locaux pour l’équation de Ginzburg-Landau sont à symétrie radiale. (French) [Local minimizers for the Ginzburg-Landau equation are radially symmetric] C. R. Acad. Sci. Paris Sér. I Math. 323, 593–598 (1996).MathSciNetzbMATHGoogle Scholar
  52. [Ne]
    Nelson, E.: The free Markov Field, J. Funct. Anal. 12, 211–227 (1973).zbMATHCrossRefGoogle Scholar
  53. [On]
    Onofri, E.: On the positivity of the effective action in a theory of random surfaces, Commun. Math. Phys. 86, 321–326 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  54. [OPS]
    Osgood, B, Phillips, R. and Sarnak, P.: Extremals of determinants of Laplacians, J. Funct. Anal. 80, 148–211 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  55. [Ri]
    Rivasseau, V.: Lieb’s correlation inequality for plane rotors, Commun. Math. Phys. 77, 145–147 (1980)MathSciNetCrossRefGoogle Scholar
  56. [Ro]
    Rotfel’d, S. Yu.: Remarks on the singular numbers of the sum of completely continuous operators, Funct. Anal. Appl. Consultants Bureau trans. 1, 252–253 (1967).MathSciNetCrossRefGoogle Scholar
  57. [Roz]
    Rozenblum, G.V.: Distribution of the discrete spectrum of singular differential operators, Dokl. Aka. Nauk SSSR 202, 1012–1015 (1972). The details are given in: Distribution of the discrete spectrum of singular differential operators, Izv. Vyss. Ucebn. Zaved. Matematika 164, 75-86 (1976) [English transi. Sov. Math. (Iz. VUZ) 20, 63-71 (1976).]Google Scholar
  58. [RR]
    Robinson, D. W. and Ruelle, D.: Mean entropy of states in classical statistical mechanics, Commun. Math. Phys. 5, 288–300 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  59. [Ru]
    Ruelle, D.: Large volume limit of the distribution of characteristic exponents in turbulence, Commun. Math. Phys. 87, 287–302 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  60. [Schu]
    Schupp, P.: On Lieb’s conjecture for the Wehrl entropy of Bloch coherent states, Comm. Math. Phys. 207, 481–493 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  61. [Se]
    Segal, I.: Construction of nonlinear quantum processes I, Ann. Math. 92, 462–481, 1970zbMATHCrossRefGoogle Scholar
  62. [Sh]
    Shor, P. W.: Additivity of the Classical Capacity of Entanglement-Breaking Quantum Channels, arXiv quant-ph/0201149, to appear in Jour. Math. Phys.Google Scholar
  63. [Sil]
    Simon, B.: Correlation inequalities and the decay of correlations in ferromagnets, Commun. Math. Phys. 77, 111–126 (1980).CrossRefGoogle Scholar
  64. [Si2]
    Simon, B.: A remark on Nelson’s best hypercontractive estimates, Proc. Am. Math. Soc. 55, 376–378 (1976).zbMATHGoogle Scholar
  65. [Sim]
    Simon, B.: Trace Ideals and their Applications, Cambridge Univ. Press 1979.Google Scholar
  66. [SMYY]
    Singer, I. M., Wong, B., Yau, S.-T. and Yau, Stephen S.-T.: An estimate of the gap of the first two eigenvalues in the Schrödinger operator. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12, 319–333 (1985).MathSciNetzbMATHGoogle Scholar
  67. [SS]
    Seiler, E. and Simon, B.: An inequality among determinants, Proc. Nat. Acad. Sci. USA 72, 3277–3278 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  68. [St]
    Stanley, R. P.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry, in Graph Theory and its Applications: East and West, Ann. N. Y. Acad. Sci. 576, 500–535 (1989).MathSciNetCrossRefGoogle Scholar
  69. [We]
    Wehrl, A.: General properties of entropy, Rev. Mod. Phys. 50, 221–260 (1978).MathSciNetCrossRefGoogle Scholar
  70. [Wei]
    Weidl, T.: On the Lieb-Thirring constants L Y,1 for δ ≥ 1/2, Commun. Math. Phys. 178, 135–146 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  71. [WY]
    Wigner, E.P. and Yanase M.M.: Information content of distributions, Proc. Acad. Sci. U.S.A. 49, 910–918 (1963). See also: On the positive semidefmite nature of certain matrix expressions, Canad. J. Math. 16, 397-406, (1964).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Michael Loss
  • Mary Beth Ruskai

There are no affiliations available

Personalised recommendations