Advertisement

Adaptive Hybrid Mixed Finite Element Discretization of Instationary Variably Saturated Flow in Porous Media

  • P. Knabner
  • E. Schneid
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 21)

Abstract

For the Richards equation, a nonlinear elliptic-parabolic partial differential equation modelling saturated-unsaturated flow in porous media, we present a hybrid mixed finite element discretization. The efficiency of the algorithm is improved by local time step and grid adaption. The adaption algorithms are based on rigorous error estimators, whose derivation is indicated. Examples elucidate the performance of the algorithm

Keywords

Multigrid Method Time Step Size Mixed Finite Element Error Indicator Richardson Extrapolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bornemann, F.A. (1991) An Adaptive Multilevel Approach to Parabolic Equations in Two Space Dimensions. PhD thesis, Konrad-Zuse-Zentrum für Informationstechnik, BerlinGoogle Scholar
  2. 2.
    Braess, D. and Verfürth, R. (1990) Multigrid methods for nonconforming finite elelemnt methods. SIAM J. Numer. Anal., 274, 979–986CrossRefGoogle Scholar
  3. 3.
    Genuchten van, M.T. (1989) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J44, 892–898CrossRefGoogle Scholar
  4. Knabner, P. and Summ, G. Efficient realization of the mixed finite element discretization for nonlinear problems, in preparationGoogle Scholar
  5. 5.
    Schneid, E. (2000) Hybrid-Gemischte Finite Elemente Diskretisierung der Richards-Gleichung. PhD thesis. Universität Erlangen, Institut für Angewandte MathematikGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • P. Knabner
    • 1
  • E. Schneid
    • 1
  1. 1.University of Erlangen-NürnbergInstitute of Applied MathematicsErlangenGermany

Personalised recommendations