Numerical Techniques for Different Time Scales in Electric Circuit Simulation

  • A. Bartel
  • M. Günther
  • R. Pulch
  • P. Rentrop
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 21)


The simulation of integrated circuits demands an increasing amount of computational resources, since systems become more and more complex and parasitic effects are included to a larger extent. However, the number of active elements keeps relatively small: less than 10%. In other settings digital and analog circuits are coupled, which yields systems with largely differing time scales. We will discuss two techniques, which are adapted to those cases. One approach is based on multirate Rosenbrock-Wanner schemes, the other leads to a PDE-model for driven oscillators


Circuit Simulation Ordinary Differential Equation Model Network Equation Node Potential Step Size Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartel, A.: Multirate ROW Methods of Mixed Type for Circuit Simulation. To appear in [24]Google Scholar
  2. 2.
    Brachtendorf, H. G.: Simulation des eingeschwungenen Verhaltens elektronischer Schaltungen. Shaker, Aachen, 1994Google Scholar
  3. 3.
    Brachtendorf, H. G., Welsch, G., Laur, R., Bunse-Gerstner, A.: Numerical steady state analysis of electronic circuits driven by multi-tone signals. Electrical Engineering 79 (1996) 103–112CrossRefGoogle Scholar
  4. 4.
    McCalla, W. J.: Fundamentals of Computer Aided Circuit Simulation. Acad. Publ. Group, Dordrecht (1988) KluwerGoogle Scholar
  5. 5.
    Denk, G.: An improved numerical integration method in the circuit simulator SPICE2-S. In: Bank, R.E., Bulirsch, R., Merten, K.: Mathematical modelling and simulation of electrical circuits and semiconductor devices. ISNM 93. Basel: Birkhäuser-Verlag (1990) 84–90Google Scholar
  6. 6.
    Estévez Schwarz, D., Tischendorf, C.: Structural analysis of electric circuits and consequences for MNA. Int. J. Circ. Theor. Appl. 28 (2000) 131–162zbMATHCrossRefGoogle Scholar
  7. 7.
    Feldmann, U., Weyer, U., Zheng, Q., Schultz, R., Wriedt, H.: Algorithms for modern circuit simulation. AEU 46 (1992) 274–285Google Scholar
  8. 8.
    Gear, C.W., Wells, D.R. Multirate Linear Multistep Methods. BIT 24 (1984) 484–502MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Günther, M.: Simulating digital circuits numerically - a charge-oriented ROW approach. Num. Math. 79 (1998) 203–212zbMATHGoogle Scholar
  10. 10.
    Günther, M., Feldmann, U.: CAD based electric circuit modeling I: mathematical structure and index of network equations. Surv. Math. Ind. 8 (1999) 97–129zbMATHGoogle Scholar
  11. 11.
    Günther, M., Kværn0, A., Rentrop, P.: Multirate Partitioned Runge-Kutta Methods. To appear in BITGoogle Scholar
  12. 12.
    Günther, M., Rentrop, P.: Multirate ROW methods and latency of electric circuits. Applied Numerical Mathematics 13 (1993) 83–102MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Günther, M., Rentrop, P., Feldmann, U.: CHORAL - a one step method as numerical low pass filters. To appear in: [24]Google Scholar
  14. 14.
    Ho, C. W., Ruehli, A. E., Brennan, P. A.: The modified nodal approach to network analysis. IEEE Trans. Circuits and Systems, CAS 22 (1975) 505–509Google Scholar
  15. 15.
    Hoschek, M.: Einschrittverfahren zur numerischen Simulation elektrischer Schaltungen. VDI Verlag, Düsseldorf, 1999Google Scholar
  16. 16.
    Kampowsky, W., Rentrop, P., Schmitt, W.: Classification and numerical simulation of electric circuits. Surv. Math. Ind. 2 (1992) 23–65zbMATHGoogle Scholar
  17. 17.
    März, R., Tischendorf, C.: Recent results in solving index 2 differential algebraic equations in circuit simulation. SIAM. J. Sci. Comp. 18 (1997) 139–159zbMATHGoogle Scholar
  18. 18.
    Nagel, W.: SPICE 2 - a computer program to simulate semiconductor circuits. Dissertation. Berkeley, CA: UC Berkeley, 1975Google Scholar
  19. 19.
    Pulch, R., Günther, M.: A Method of Characteristics for Solving Multirate Partial Differential Equations in Radio Frequency Application. Preprint 00/07, IWRMM, University Karlsruhe (2000)Google Scholar
  20. 20.
    Rentrop, P., Roche, M., Steinebach, G.: The application of Rosenbrock-Wanner type methods with stepsize control in differential-algebraic equations. Nu-mer. Math. 55 (1989) 545–563MathSciNetzbMATHGoogle Scholar
  21. 21.
    Roychowdhury, J.: Efficient Methods for Simulating Highly Nonlinear Multi-Rate Circuits. Proc. Design Automation Conference, Anaheim, CA (1997)Google Scholar
  22. 22.
    Sieber, E.-R., Feldmann, U., Schultz, R., Wriedt, H.: Timestep control for charge conserving integration in circuit simulation. In: Bank, R.E., Bulirsch, R., Gajewski, H., Merten, K.: Mathematical modelling and simulation of electrical circuits and semiconductor devices. ISNM 117. Basel: Birkhäuser-Verlag (1994) 103–113Google Scholar
  23. 23.
    Tischendorf, C.: Topological Index Calculation of DAEs in circuit simulation. Surv. Math. Ind 8(3–4) (1999) 187–199MathSciNetzbMATHGoogle Scholar
  24. 24.
    van Rienen, U., Günther, M., Hecht, D.: Scientific Computing in Electrical Engineering - Proceedings of the 3rd International Workshop - 20–23. August 2000, Warnemünde, Germany. Springer (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Bartel
    • 1
  • M. Günther
    • 1
  • R. Pulch
    • 1
  • P. Rentrop
    • 1
  1. 1.Centre for Scientific Computing and Mathematical ModellingUniversity of KarlsruheKarlsruheGermany

Personalised recommendations