Diffusion Of Metals In Polymers And During Metal/Polymer Interface Formation

  • F. Faupel
  • A. Thran
  • M. Kiene
  • T. Strunskus
  • V. Zaporojtchenko
  • K. Behnke
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 9)

Abstract

The increasing application of polymers in microelectronics, particularly their potential use as low dielectric constant materials in IC applications has aroused much interest in diffusion of metals in polymers. Various investigations, involving surface spectroscopy, electron microscopy, ion scattering, direct radiotracer measurements, and Monte Carlo simulations have contributed considerably to our understanding of the diffusion behavior. Metal diffusion in polymers proved to differ markedly from ordinary diffusion because of the sharply contrasting properties of the materials. A strong correlation has been established between the reactivity of a metal and its diffusion behavior. Reactive metals like Cr and Ti form relatively sharp interfaces with polymers. Metals of lower reactivity, on the other hand, diffuse into polymers at elevated temperatures but have a very strong tendency to be immobilized by aggregation. Diffusion into the polymer increases strongly at low deposition rates, where a large fraction of isolated metal atoms is able to diffuse into the polymer before being trapped by other atoms at or near the surface. The extent of diffusion appears to be determined by the early stage of the deposition process. Here, condensation coefficients may deviate markedly from unity, thus keeping the initial metal concentration at the surface very low. No significant diffusion is expected from a continuous metal film as a consequence of the high cohesive energy of the metal, unless chemical interaction involves the formation of metal ions. Metal ions are highly mobile and do not aggregate due to electrostatic repulsion. The model emerging from these observations allows us to predict the salient features of diffusion and interface formation between metals and polymers in general, and particularly with respect to the new low dielectric constant polymers.

Keywords

Entropy Depression Immobilization Radioactive Isotope Flare 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.L. Mittal, J.R. Susko (Eds.):Metallized Plastics 1: Fundamental and Applied Aspects(Plenum Press, New York 1989)Google Scholar
  2. 2.
    K.L. Mittal (Ed.):Metallized Plastics 2: Fundamental and Applied Aspects(Plenum Press, New York 1991)Google Scholar
  3. 3.
    3. K.L. Mittal (Ed.): Metallized Plastics 3: Fundamental and Applied Aspects(Plenum Press, New York 1993)Google Scholar
  4. 4.
    K.L. Mittal (Ed.):Metallized Plastics: Fundamentals and Applications(Marcel Dekker, New York 1998)Google Scholar
  5. 5.
    S.P. Kowalczyk: inMetallization of Polymersed. by E. Sacher, J. Pireaux, S.P. Kowalczyk (ACS Symp. Series440American Chem. Soc., Washington DC 1990) p. 10Google Scholar
  6. 6.
    C.P. Wong (Ed.):Polymers for Electronic and Photonic Applications(Academic Press, Boston 1993)Google Scholar
  7. 7.
    M. Ghosh, K.L. Mittal (Eds.):Polyimides: Fundamental Aspects and Technological Applications(Marcel Dekker, New York 1996)Google Scholar
  8. 8.
    M.T. Bohr:IEEE IEDM241 (1995)Google Scholar
  9. 9.
    C. Chiang, P.S. Ho, T.-M. Lu, J. Wetzel (Eds.):Low-Dielectric Constant Materials and Applications in Microelectronics IV, Mater. Res. Soc. Symp. Proc. 511 (1998)Google Scholar
  10. 10.
    See also Chaps. 1–3, 7, and 10 of this book.Google Scholar
  11. 11.
    P.S. Ho, R. Haight, R.C. White, B.D. Silverman, F. Faupel: inFundamentals of Adhesioned. by L.H. Lee (Plenum Press, New York 1991) p. 383Google Scholar
  12. 12.
    R.M. Tromp, F.K. LeGoues, P.S. Ho: J. Vac. Sci. Technol. A3782 (1985)Google Scholar
  13. 13.
    F.K. LeGoues, B.D. Silverman, P.S. Ho: J. Vac. Sci. Technol. A62200 (1988)Google Scholar
  14. 14.
    S.P. Kowalczyk, Y.H. Kim, G.F. Walker, J. Kim: Appl. Phys. Lett.52375 (1988)CrossRefGoogle Scholar
  15. 15.
    F. Faupel: inPolymer-Solid Interfacesed. by J.J. Pireaux, P. Bertrand, J.L. Brédas (IOP Publishing, 1992) p. 171Google Scholar
  16. 16.
    F. Faupel, R. Willecke, A. Thran: Mater. Sci. Eng. R221–55 (1998)CrossRefGoogle Scholar
  17. 17.
    M. Kiene, T. Strunskus, R. Peter, F. Faupel: Adv. Mater.101357 (1998)CrossRefGoogle Scholar
  18. 18.
    S.P. Kowalczyk, Y.H. Kim, G.F. Walker, J. Kim: Appl. Phys. Lett.52375 (1988)CrossRefGoogle Scholar
  19. 19.
    D.J. Godbey, L.J. Buckley, A.P. Purdy, A.W. Snow: Thin Solid Films308–309, 470(1997)Google Scholar
  20. 20.
    G.J. Kovacs, P.S. Vincett: J. Colloid Interface Sci.90335 (1982)CrossRefGoogle Scholar
  21. 21.
    G.J. Kovacs, P.S. Vincett, C. Tremblay, A.L. Pundsack: Thin Solid Films10121 (1983)CrossRefGoogle Scholar
  22. 22.
    C. v. Bechtolsheim, V. Zaporojtchenko, F. Faupel: Appl. Surf. Sci.151119 (1999)CrossRefGoogle Scholar
  23. 23.
    Y.C. Jean, R. Zhang, H. Cao, J. Yuan, C. Huang, B. Nielsen, P. Asoka-Kumar Phys. Rev. B56(14), R8459 (1997)CrossRefGoogle Scholar
  24. 24.
    T. Kajiyama, K. Tanaka, A. Takahara• Macromol.283482 (1995)CrossRefGoogle Scholar
  25. 25.
    See, for example, K.D. Rendulic, Surf. Sci.27234 (1992)CrossRefGoogle Scholar
  26. 26.
    A. Thran, M. Kiene, V. Zaporojtchenko, F. Faupel: Phys. Rev. Lett.821903 (1999)CrossRefGoogle Scholar
  27. 27.
    V. Zaporojtchenko, K. Behnke, A. Thran, T. Strunskus, F. Faupel: Appl. Surf. Sci 144–145355(1999)Google Scholar
  28. 28.
    V. Zaporojtchenko, K. Behnke, T. Strunskus, F. Faupel:Surface Interface Analysis 29439 (2000)CrossRefGoogle Scholar
  29. 29.
    See for example: G. Ertl and J. KüppersLow Energy Electrons and Surface Chemistry(VCH Publishers, Weinheim 1985)Google Scholar
  30. 30.
    N.J. DiNardo, in [1]Google Scholar
  31. 31.
    L.J. Matienzo, W.J. Unertl, in [7]Google Scholar
  32. 32.
    J.L. Jordan-Sweet in [5]Google Scholar
  33. 33.
    T. Strunskus, M. Grunze, G. Kochendoerfer, Ch. Wöll: Langmuir122712 (1996)CrossRefGoogle Scholar
  34. 34.
    R. Haight, R.C. White, B.D. Silverman, P.S. Ho: J. Vac. Sci. Technol. A 6, 2188 (1988)CrossRefGoogle Scholar
  35. 35.
    A.R. Rossi, B.D. Silverman: in J.H. Lupinski, R.S. Moore (Eds.)Polymeric Materials for Electronic Packaging and InterconnectionACS Symposium Series407(American Chemical Society, Washington DC 1989)Google Scholar
  36. 36.
    A. Selmani: J. Vac. Sci. Technol. A8123 (1990)CrossRefGoogle Scholar
  37. 37.
    H.M. Meyer, S.G. Anderson, Lj. Atanasoska, J.H. Weaver: J. Vac. Sci. Technol. A 6, 30, 1002 (1988)Google Scholar
  38. 38.
    N.J. DiNardo, J.E. Demuth, T.C. Clarke: Chem. Phys. Lett.121239 (1985)CrossRefGoogle Scholar
  39. 39.
    L.J. Gerenser: J. Vac. Sci. Technol. A83682 (1990)CrossRefGoogle Scholar
  40. 40.
    A.J. Pertsin, Y.M. Pashunin: Appl. Surf. Sci.47115 (1991)Google Scholar
  41. 41.
    G.D. Davis, B.J. Rees, P.L. Whisnant• J Vac. Sci. Technol. A122378 (1994)Google Scholar
  42. 42.
    T. Strunskus, M. Kiene, R. Willecke, A. Thran, C.v. Bechtolsheim, F. Faupel: Mater. Corros.49180 (1998)Google Scholar
  43. 43.
    J.J. Pireaux, C. Grégoire, M. Vermeersch, P.A. Thiry, M.R. Vilar, R. Caudano: in E. Sacher, J. Pireaux, S.P. Kowalczyk (Eds.)Metallization of PolymersACS Symposium Series440(American Chem. Soc., Washington DC 1990) p. 47Google Scholar
  44. 44.
    F.S. Ohuchi, S.C. Freilich: J. Vac. Sci. Technol. A41039 (1984); A 6, 1004 (1988)Google Scholar
  45. 45.
    W.N. Unertl: High Perf. Polym. 2, 15 (1990)Google Scholar
  46. 46.
    S.C. Freilich, F.S. Farnsworth: Polymer 28 1912 (1987)Google Scholar
  47. 47.
    J.G. Clabes: J. Vac. Sci. Technol. A 6, 2887 (1988)CrossRefGoogle Scholar
  48. 48.
    L. Atanasoska, S.G. Anderson, H.M. Meyer, Z. Lin, J.H. Weaver: J. Vac. Sci. Technol. A53325 (1987)CrossRefGoogle Scholar
  49. 49.
    P.S. Ho, P.O. Hahn, J.W. Bartha, G.W. Rubloff, F.K. LeGoues, B.D. Silverman: J. Vac. Sci. Technol. A 3, 739 (1985)CrossRefGoogle Scholar
  50. 50.
    J.J. Pireaux, M. Vermeersch, C. Grégoire, P.A. Thiry, R. Caudano, T.C. Clarke: J. Chem. Phys.883353 (1988)CrossRefGoogle Scholar
  51. 51.
    S.G. Anderson, H.M. Meyer, J.H. Weaver: J. Vac. Sci. Technol. A 6, 2205 (1988)CrossRefGoogle Scholar
  52. 52.
    P.O. Hahn, G.W. Rubloff, J.W. Bartha, F.K. LeGoues, P.S. Ho: Mater. Res. Soc. Symp. Proc.40251 (1985)Google Scholar
  53. 53.
    J.G. Clabes, M.J. Goldberg, A. Viehbeck, C.A. Kovac: J. Vac. Sci. Technol. A 6, 985 (1988)CrossRefGoogle Scholar
  54. 54.
    M. Kiene, T. Strunskus, F. Faupel in [4]Google Scholar
  55. 55.
    R.G. Mack, E. Grossman, W.N. Unertl: J. Vac. Sci. Technol. A 8, 3827 (1990)CrossRefGoogle Scholar
  56. 56.
    M. Fontaine, J.M. Layet, C. Grégoire, J.J. Pireaux: Appl. Phys. Lett. 62, 2938 (1993)CrossRefGoogle Scholar
  57. 57.
    D.J. Auerbach: in Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford University Press, New York 1992) Vol. 2Google Scholar
  58. 58.
    J.A. Venables: Surf. Sci 299–300798 (1994)Google Scholar
  59. 59.
    R. Poteau, J.L. Heully, F. Spiegelmannn: Z. Phys. D40479 (1997)CrossRefGoogle Scholar
  60. 60.
    F. Faupel: Adv. Mater.2266 (1990)CrossRefGoogle Scholar
  61. 61.
    F. Faupel, G. Kroll: inDiffusion in Non-Metallic SolidsLandolt-Börnstein, New Series, W. Martienssen (Ed. in Chief), Volume III/33B1, D.L. Beke (Ed.) (Springer-Verlag, Berlin, Heidelberg, New York 1999)Google Scholar
  62. 62.
    A. Foitzik, F. Faupel: Mater. Res. Soc. Symp. Proc.20359 (1991)Google Scholar
  63. 63.
    F. Faupel: phys. stat. sol. (a)1349 (1992)CrossRefGoogle Scholar
  64. 64.
    C.v. Bechtolsheim, V. Zaporojtchenko, F. Faupel: J. Mater. Res.149, 3538 (1999)CrossRefGoogle Scholar
  65. 65.
    F. Faupel, P.W. Huppe, K. Rätzke, R. Willecke, T. Hehenkamp: J. Vac. Sci. Technol. A1092 (1992)CrossRefGoogle Scholar
  66. 66.
    F. Faupel, D. Gupta, B.D. Silverman, P.S. Ho: Appl. Phys. Lett.55357 (1989)CrossRefGoogle Scholar
  67. 67.
    F. Faupel, D. Gupta, B.D. Silverman, P.S. Ho: inAdvanced Materials and Processesed. by H.E. Exner, V. Schumacher (Deutsche Gesellschaft für Materialkunde, Oberursel 1990), p. 887Google Scholar
  68. 68.
    D. Gupta, F. Faupel, R. Willecke: inDiffusion in Amorphous Materialsed. by H. Jainand, D. Gupta (The Minerals, Metals & Materials Society, 1994) p. 189Google Scholar
  69. 69.
    R. Willecke, F. Faupel: Macromolecules30567–573 (1997)CrossRefGoogle Scholar
  70. 70.
    R. Willecke, F. Faupel: J. Polym. Sci. Polym. Phys. Ed. 351043 (1997)CrossRefGoogle Scholar
  71. 71.
    A. Thran, F. Faupel: Defect Diff. Forum 143–147 (1)903(1997)Google Scholar
  72. 72.
    B.D. Silverman: Macromolecules242467 (1991)CrossRefGoogle Scholar
  73. 73.
    M. Kiene: PhD thesis, University of Kiel, 1997Google Scholar
  74. 74.
    D. Gupta: inDiffusion in Thin FilmsEncyclopedia Appl. Phys.5(VCH Pub. Inc., New York 1993) p. 75Google Scholar
  75. 75.
    R. Willecke: PhD thesis, University of Göttingen, 1993Google Scholar
  76. 76.
    J.H. Das, J.E. Morris: J. Appl. Phys.665816 (1989)CrossRefGoogle Scholar
  77. 77.
    N.Y. Kim, H.-S. Yoon, S.Y. Kim, C.N. Whang, K.W. Kim, S.J. Cho: J. Vac. Sci. Technol. B17380 (1999)CrossRefGoogle Scholar
  78. 78.
    M. Du, R.L. Opila, V.M. Donnelly, J. Sapjeta, T. Boone: J. Appl. Phys.851496 (1999)CrossRefGoogle Scholar
  79. 79.
    J.H. Das, J.E. Morris: IEEE Trans. Compon. Packag. Manuf. Technol. B17620 (1994)CrossRefGoogle Scholar
  80. 80.
    D. Popovici, K. Piyakis, M. Meunier, E. Sacher: J. Appl. Phys.83108 (1998)CrossRefGoogle Scholar
  81. 81.
    N. Marin, Y. Serruys, P. Calmon: Nuclear Instrum. Meth. Phys. Res. B108179 (1996)CrossRefGoogle Scholar
  82. 82.
    P.-A. Collier, P. Bertrand: inProc. 7th Europ. Conf. on Applications of Surface and Interface Analysised. by I. Olefjord, L. Nyborg, D. Briggs (Wiley, Chichester 1997) 783Google Scholar
  83. 83.
    S.S. Wong, A.L.S. Loke, J.T. Wetzel, P.H. Townsend, R.N. Vrtis, M P. Zussman in [9]Google Scholar
  84. 84.
    A.L.S. Loke, J.T. Wetzel, C. Ryu, W.-J. Lee, S.S. Wong: Symposium on VLSI Technology, Honolulu, 1998Google Scholar
  85. 85.
    J.M. Neirynck, R.J. Gutmann, S.P. Murarka: Proc. CMP-MIC Conference IMIC 1999, p. 192Google Scholar
  86. 86.
    V. Zaporojtchenko, T. Strunskus, K. Behnke, C.v. Bechtolsheim, M. Kiene, F. Faupel:J. Adhesion Sci. Technol.14467 (2000)CrossRefGoogle Scholar
  87. 87.
    C.v. Bechtolsheim: PhD thesis, University of Kiel, 1998Google Scholar
  88. 88.
    K. Shanker, J.R. MacDonald: J. Vac. Sci. Technol. A52894 (1987)CrossRefGoogle Scholar
  89. 89.
    J. Philibert:Atom Movements Mass Transport and Diffusion in Solids (les Editions de Physique, Les Ulis Cedex 1991)Google Scholar
  90. 90.
    D. Ehlich, H. Sillescu: Macromolecules231600 (1990)CrossRefGoogle Scholar
  91. 91.
    D.R. Paul, Yuri P. Yampol’skii (Eds.):Polymeric Gas Separation Membranes(CRC Press, Boca Raton 1994)Google Scholar
  92. 92.
    F. Müller-Plathe, W.F.v. Gusteren: J. Chem. Phys.1034745 (1995)CrossRefGoogle Scholar
  93. 93.
    L. Tröger, H. Hünnefeld, S. Nunes, M. Oehring, D. Fritsch: J. Phys. Chem. B1011279 (1997)CrossRefGoogle Scholar
  94. 94.
    S.L. Vogel, H. Schonhorn: J. Appl. Polym. Sci.23495 (1979)CrossRefGoogle Scholar
  95. 95.
    J.F. Silvain, A. Veyrat, J.J. Ehrhardt: Thin Solid Films221114 (1992)CrossRefGoogle Scholar
  96. 96.
    L.M. Castello, W.J. Koros: J. Polym. Sci. Polym. Phys.32701 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • F. Faupel
  • A. Thran
  • M. Kiene
  • T. Strunskus
  • V. Zaporojtchenko
  • K. Behnke

There are no affiliations available

Personalised recommendations