Genetische und metabolische Erkrankungen

  • H. Dancygier
  • M. O. Doss
  • H. Frühauf
  • U. Gross
  • A. Kühnel
  • C. Niederau
  • C. Smolarek
  • U. Stölzel
  • W. Stremmel
Chapter

Zusammenfassung

Der Morbus Wilson ist eine autosomal-rezessiv vererbte Erkrankung des Kupferstoffwechsels mit einer Häufigkeit heterozygoter Merkrnalsträger von 1:90, während Homozygote mit einer Frequenz von 1:30.000 vorkommen. Das Hauptmerkmal dieser Erkrankung ist eine progrediente Kupferansammlung vornehmlich in Leber und Gehirn, welche zur Entwicklung einer Leberzirrhose und zentral-motorischen Schäden führt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Brewer GJ (1995) Practical recommendations and new therapies for Wilson’s disease. Drugs 50: 240–249PubMedGoogle Scholar
  2. Brewer GJ, Hill GJ, Prasad AS et al. (1983) Treatment of Wilson’s disease with zinc. Ann Intern Med 99: 314–319PubMedGoogle Scholar
  3. Brewer GJ, Terry CA, Aisen AM et al. (1987) Worsening of neurologic syndrome in patients with Wilson’s disease with initial penicillamine therapy. Arch Neurol 44: 490–493PubMedGoogle Scholar
  4. Brewer GJ, Yuzbasiyan-Gurkan V (1992) Wilson disease. Medicine (Baltimore) 71: 139–164Google Scholar
  5. Chen GL, Chen YS, Lui CC et al. (1997) Neurological improvement of Wilson’s disease after liver transplantation. Transplant Proc 29: 497–498PubMedGoogle Scholar
  6. Dahlmann T, Hartvig P, Lofholm M et al. (1995) Longterm treatment of Wilson’s disease with triethylene tetramine dihydrochloride (trientine). QJM 88: 609–616Google Scholar
  7. Gollan JL, Gollan TJ (1998) Wilson disease in 1998: genetic, diagnostic and therapeutic aspects. J Hepatol 28: 28–36PubMedGoogle Scholar
  8. Ludwig J, Moyer TP, Rakela J (1991) The liver biopsy diagnosis of Wilson’s disease. Methods in pathology. Am J Clin Path 102: 443–446Google Scholar
  9. Oder W, Grimm G, Kollegger H et al. (1991) Neurological and neuropsychiatric spectrum of Wilson’s disease: a prospective study of 45 cases. J Neurol 238: 281–287PubMedGoogle Scholar
  10. Payne AS, Kelly EJ, Gitlin JD (1998) Functional expression of the Wilson disease protein reveals mislocalization and impaired copper dependent trafficking of the common H1069Q mutation. Proc N atl Acad Sci USA 95: 10854–10859Google Scholar
  11. Rela M, Heaton ND, Vougas V et al. (1993) Orthotopic liver transplantation for hepatic complications of Wilson’s disease. Br J Surg 80: 909–911PubMedGoogle Scholar
  12. Riedel HD, Fitscher BA, Hefter H et al. (1994) Klonierung des Morbus-Wilson-Gens. Z Gastroenterol 32: 472–473PubMedGoogle Scholar
  13. Schilsky ML (1996) Wilson disease: genetic basis of copper toxicity and natural history. Semin Liver Dis 16: 83–95PubMedGoogle Scholar
  14. Schilsky ML, Scheinberg IH, Sternlieb I (1994) Liver transplantation for Wilson’s disease: indications and outcome. Hepatology 19: 583–587PubMedGoogle Scholar
  15. Schumacher G, Platz KP, Mueller AR et al. (1997) Liver transplantation: treatment of choice for hepatic and neurological manifestation of Wilson’s disease. Clin Transplant 11: 217–224PubMedGoogle Scholar
  16. Shah AB, Chernov I, Zhang HAT et al. (1997) Identification and analysis of mutations in the Wilson disease gene (ATP7B): population frequencies, genotype-phenotype correlation, and functional analyses. Am J Hum Gen 61: 317–328Google Scholar
  17. Strand S, Hofmann WJ, Grambihler A et al. (1998) Hepatic failure and liver cell damage in acute Wilson’s disease involve CD95 (APO-1/Fas) mediated apoptosis. Nat Med 4: 588–593PubMedGoogle Scholar
  18. Stremmel W, Meyerrose KM, Niederau C et al. (1991) Wilson disease: clinical presentation, treatment and survival. Ann Intern Med 115: 720–726PubMedGoogle Scholar
  19. Turnland, JR (1998) Human whole-body copper metabolism. Am J Clin Nutr 67: 9605–9645Google Scholar
  20. Walshe JM (1987) The liver in Wilson’s disease (hepatolenticular degeneration). In: Schiff L, Schiff ER (eds) Diseases of the liver, 6th ed. Lippincott, Philadelphia, pp 1037–1043Google Scholar
  21. Yarze JC, Martin P, Munoz SJ et al. (1992) Wilson’s disease: current status. Am J Med 92: 643–654PubMedGoogle Scholar
  22. Yuzbasiyan-Gurkan V, Grider A, Nostrant V et al. (1992) Treatment of Wilson’s disease with zinc X. Intestinal metallothionein induction. J Lab Clin Med 12: 380–386Google Scholar
  23. Adams PC, Speechley M, Kertesz AE (1991) Long-term survival analysis in hereditary hemochromatosis. Gastroenterology 101: 368–372PubMedGoogle Scholar
  24. Edwards CQ, Griffen LM, Goldgar D et al. (1988) Prevalence of hemochromatosis among 11,065 presumably healthy blood donors. N Engl J Med 318: 1355–1362PubMedGoogle Scholar
  25. Dymock W, Hamilton EBD, Laws JW et al. (1970) Arthropathy of hemochromatosis: clinical and radiological analysis of73 patients with iron overload. Ann Rheum Dis 29: 469–476PubMedGoogle Scholar
  26. Fargion S, Mandelli C, Piperno A (1992) Survival and prognostic factors in 212 Italian patients with genetic hemochromatosis. Hepatology 15: 655–659PubMedGoogle Scholar
  27. Feder JN, Gnirke A, Thomas W et al. (1996) A novel MCH class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13: 399–407PubMedGoogle Scholar
  28. Finch SC, Finch CA (1966) Idiopathic hemochromatosis, an iron storage disease. Medicine (Baltimore) 34: 381–430Google Scholar
  29. Fleming RE, Sly WS (2002) Mechanisms of iron accumulation in hereditary hemochromatosis. Annu Rev Physiol 4: 663–680Google Scholar
  30. Fletcher LM, Halliday JW (2002) Haemochromatosis: understanding the mechanism of disease and implications for diagnosis and patient management following the recent cloning of novel genes involved in iron metabolism. J Intern Med 251: 181–192PubMedGoogle Scholar
  31. Kley HK, Niederau C, Stremmel W (1985) Conversion of androgens to estrogens in idiopathic hemochromatosis: comparison with alcoholic cirrhosis. J Clin Endocrinol Metab 61: 1–6PubMedGoogle Scholar
  32. Loreal O, Deugnier Y, Moirand R (1992) Liver fibrosis in genetic hemochromatosis. Respective roles of iron and non-iron related factors in 127 homozygous patients. J Hepatol 16: 122–127PubMedGoogle Scholar
  33. Merrywether-Clarke AT, Pointon JJ, Sherman JD et al. (1997) Global prevalence of putative haemochromatosis mutations. J Med Genet 34: 275–278Google Scholar
  34. Niederau C (1999) Diabetes mellitus bei Hämochromatose. Z Gastroenterol 37 [suppl 1]: 22–32Google Scholar
  35. Niederau C, Fischer R, Sonnenberg A et al. (1985) Survival and causes of death in cirrhotic and noncirrhotic patients with primary haemochromatosis. N Engl J Med 313: 1256–1262PubMedGoogle Scholar
  36. Niederau C, Fischer R, Pürschel A et al. (1996) Long-term survival in patients with hereditary hemochromatosis. Gastroenterology 110: 1107–1119PubMedGoogle Scholar
  37. Niederau C, Niederau CM, Littauer A et al. (1998) Screening for iron overload andiron deficiency. Ann Intern Med 128: 337–345PubMedGoogle Scholar
  38. Parkkila S, Waheed A, Britton RS et al. (1997) Association of the transferrin receptor in human placenta with the HFE protein defective in hereditary hemochromatosis. Proc N atl Acad Sci USA 13: 198–202Google Scholar
  39. Pietrangelo A (2002) Physiology of iron tranport and the hemochromatosis gene. Am J Physiol Gastrointest Liver Physiol 282: G403–414Google Scholar
  40. Short EM, Winkle RA, Billingham ME (1979) Myocardial involvement in idiopathic hemochromatosis. Am J Med 70: 1275–1279Google Scholar
  41. Simon M, Bourel M, Genetet B (1977) Idiopathic hemochromatosis: demonstration of recessive transmission and early detection by family HLA typing. N Engl J Med 297: 1017–1021PubMedGoogle Scholar
  42. Townsend A, Drakesmith H (2002) Role of HFE in iron metabolism, hereditary hemochromatosis. anaemia of chronic disease, and secondary iron overload. Lancet 359: 786–790PubMedGoogle Scholar
  43. Von Herbay A, Niederau C, Pelichowska M et al. (1996) Kardiomyopathie als Todesursache bei genetischer Hamochromatose. Z Gastroenterol 34: 178–182Google Scholar
  44. Vulpe CD, Kuo YM, Murphy TL et al. (1999) Hephaestin, a caeruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21: 195–199PubMedGoogle Scholar
  45. Waheed A, Parkkila S, Zhou XY et al. (1997) Hereditary hemochromatosis: effects of Cys282Tyr and H63D mutations on associations with β2-microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells. Proc Natl Acad Sci USA 94: 12384–12389PubMedGoogle Scholar
  46. Wood RJ, Han O (1998) Recently identified molecular aspects of intestinal iron absorption. J Nutr 128: 1841–1844PubMedGoogle Scholar
  47. Burrows JA, Willis LK, Perlmutter DH (2000) Chemical chaperones mediate increased secretion of mutant alpha 1-antitrypsin (alpha 1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc Natl Acad Sci USA 97: 1796–1801PubMedGoogle Scholar
  48. Eriksson S, Carlson J, Velez R (1986) Risk of cirrhosis and primary liver cancer in alpha1-antitrypsin deficiency. N Engl J Med 314: 736–739PubMedGoogle Scholar
  49. Filippino F, Soubrane O, Devictor D et al. (1994) Liver transplantation for end-stage liver disease associated with alphalantitrypsin deficiency in children: pretransplant natural history timing and results of transplantation. J Hepatol 20: 72–78Google Scholar
  50. Gerok W, Häussinger D, Pausch J (1995) Primare Stoffwechselund Speicherkrankheiten der Leber. In: Gerok W, Blum HE (Hrsg) Hepatologie, 2. Aufl. Urban & Schwarzenberg, München Wien Baltimore, S 509–511Google Scholar
  51. Ghishan FK (1996) Alpha1-antitrypsin deficiency. In: Zakim D, Boyer TD (eds) Hepatology — a textbook of liver disease, vol I, chap 52, 3rd ed. Saunders, Philadelphia London Toronto Montreal Sydney Tokyo, pp 1565–1574Google Scholar
  52. Kren BT, Bandyopadhyay P, Steer CJ (1998) In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotides. Nat Med 4: 285–290PubMedGoogle Scholar
  53. Perlmutter DH (2000) Alphacantitrypsin deficiency. Curr Treat Options Gastroenterol 3: 451–456PubMedGoogle Scholar
  54. Rhim JA, Sandgen EP, Degen JL (1994) Replacement of disease mouse liver by hepatic cell transplantation. Science 263: 1149–1152PubMedGoogle Scholar
  55. Sveger T (1976) Liver disease in α1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med 294: 1216–1221Google Scholar
  56. Sveger T, Eriksson S (1995) The liver in adolescents with alpha 1-antitrypsin deficiency. Hepatology 22: 514–517PubMedGoogle Scholar
  57. Volpert D, Molleston JP, Perlmutter DH (2000) Alpha1-antitrypsin deficiency-associated liver disease progresses slowly in some children. J Pediatr Gastroenterol Nutr 31: 258–263PubMedGoogle Scholar
  58. Bjersing L, Andersson C, Lithner F (1996) Hepatocellular carcinoma in patients from northern Sweden with acute intermittent porphyria: morphology and mutations. Cancer Epidem Biomarker Prey 5: 393–397Google Scholar
  59. Bloomer JR (1998) Liver metabolism of porphyrins and haem. J Gastroenterol Hepatol 13: 324–329PubMedGoogle Scholar
  60. Bloomer JR, Rank JM, Payne WD et al. (1996) Follow-up after liver transplantation for protoporphyric liver disease. Liver Transpl Surg 4: 269–275Google Scholar
  61. Bonkovsky HL, Poh-Fitzpatrick M, Pimstone N et al. (1998) Porphyria cutanea tarda, hepatitis C and HFE gene mutations in North America. Hepatology 27: 1661–1669PubMedGoogle Scholar
  62. Doss M (1982) Hepatic porphyrias: pathobiochemical, diagnostic, and therapeutic implications. In: Popper H, Schaffner F (eds) Progress in liver diseases. Grune & Stratton, New York, pp 573–597Google Scholar
  63. Doss MO (1998) Porphyrien und Porphyrinstoffwechselstörungen. In: Classen M, Diehl V, Kochsiek K (Hrsg) Innere Medizin, 4. Aufl. Urban & Schwarzenberg, München Wien Baltimore, S 929–940Google Scholar
  64. Doss MO, Frank M, Braun-Falco O (1991) Porphyria cutanea tarda: erythrocyte decarboxylase activity in 471 consecutive patients. Curr Probl Dermatol 20: 97–105PubMedGoogle Scholar
  65. Doss MO, Sassa S (1994) The porphyrias. In: Noe DA, Rock RC (eds) Laboratory medicine. The selection and interpretation of clinical laboratory studies. Williams & Wilkins, Baltimore, Maryland, pp 535–553Google Scholar
  66. Doss MO, Doss M (1999) Krankheiten des Hämstoffwechsels. In: Paumgartner G (Hrsg) Therapie innerer Krankheiten, 9. Aufl. Springer, Berlin Heidelberg New York, S 798–810Google Scholar
  67. Doss MO, Honcamp M, Doss M (2000) Arzneistoffe bei akuten hepatischen Porphyrien und Empfehlungen zur Anästhesie. In: Rote Liste 2000. Editio Cantor, Aulendorf/Wurtt., S 565–566Google Scholar
  68. Doss M, von Tiepermann R, Stutz G et al. (1980) Uroporphyrinogen decarboxylase inhibition in rat liver after alcohol ingestion. Med Sience 8: 562Google Scholar
  69. Elder GH (1998a) Genetic defects in the porphyrias: types and significance. Clin Dermatol 16: 225–235PubMedGoogle Scholar
  70. Elder GH (1998b) Porphyria cutanea tarda. Semin Liver Dis 18: 67–76PubMedGoogle Scholar
  71. Elder G, Worwood M (1998) Mutations in the hemochromatosis gene, porphyria cutanea tarda and iron overload. Hepatology 27: 289–291PubMedGoogle Scholar
  72. Feder IN, Gnirke A, Thomas W et al. (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13: 399–408PubMedGoogle Scholar
  73. Ferri C, Baicchi U, LaCivita L et al. (1993) Hepatitis C virus-related autoimmunity in patients with porphyria cutanea tarda. Eur J Clin Invest 23: 851–855PubMedGoogle Scholar
  74. Francis J, Smith A (1988) Oxidation of uroporphyrinogens by hydroxyl radicals: evidence for nonporphyrin products as potential inhibitors of uroporphyrinogen decarboxylase. Febs Lett 233: 311–314PubMedGoogle Scholar
  75. Frank J, Wang X, Lam HM etal. (1998) C73R is a hot spot mutation in the uroporphyrinogen III synthase gene in congenital erythropoietic porphyria. Am Hum Genet 62: 225–230Google Scholar
  76. Frank M, Doss MO (1995) Leberzirrhose bei Protoporphyrie: Gallensäurentherapie und Lebertransplantation. Z Gastroenterol 33: 399–403PubMedGoogle Scholar
  77. Groß U, Frank M, Doss MO (1998) Hepatic complications of erythropoietic protoporphyria. Photodermatol Photoimmunol Photomed 14: 52–57PubMedGoogle Scholar
  78. Groß U, Doss MO (2002) The porphyrias: pathogenesis and diagnosis. In: Blum HE (Hrsg) Liver cirrhosis and its development. Kluwer, Lancaster (in press)Google Scholar
  79. Held JL, Sassa S, Kappas A et al. (1989) Erythrocyte uroporphyrinogen decarboxylase activity in porphyria cutanea tarda: a study of 40 consecutive patients. J Invest Dermatol 93:332–334Google Scholar
  80. Kappas A, Sassa S, Galbraith A et al. (1995) The porphyrias. In: Scriver CR, Beaudet AL, Sly WS, Vale D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw Hill, New York, pp 2103–2159Google Scholar
  81. Kauppinen R, Mustajoki P (1988) Acute hepatic porphyria and hepatocellular carcinoma. Br J Cancer 57: 117–120PubMedGoogle Scholar
  82. Kauppinen R, Timonen K, Mustajoki P (1994) Treatment of the porphyrias. Ann Med 26: 31–38PubMedGoogle Scholar
  83. Köstler E (1986) Untersuchungen zur Klinik, Pathogenese und Therapie der Porphyria cutanea tarda. Habilitationsschrift, DresdenGoogle Scholar
  84. Köstler E, Riedel H, Gebhardt B (1989) HLA Untersuchungen und histochemischer Lebereisennachweis bei Porphyria cutanea tarda. Z Hautkr 64: 132–134PubMedGoogle Scholar
  85. Köstler E, Doss MO (1995) Porphyria cutanea tarda (chronische hepatische Porphyrie). Dtsch Med Wochenschr 120: 1405–1410PubMedGoogle Scholar
  86. Lelbach WK, Müller TR, Kersjes W et al. (1989) Multiple nodular foci in the liver associated with chronic hepatic porphyria after previous treatment of breast cancer. Klin Wochenschr 67: 592–597PubMedGoogle Scholar
  87. Merryweather-Clarke A, Pointon J, Shearman J et al. (1997) Global prevalence of putative haemochromatosis mutations. J Med Genet 34: 275–278PubMedGoogle Scholar
  88. Mustajoki P, Nordmann Y (1993) Early administration of heme arginate for acute porphyric attacks. Arch Intern Med 153: 2004–2008PubMedGoogle Scholar
  89. Poh-Fitzpatrick MB (1998) Clinical features of the porphyrias. Clin Dermatol 16: 251–264PubMedGoogle Scholar
  90. Puy H, Robréau AM, Rosipal R et al. (1996) Protoporphyrinogen oxidase: complete genomic sequence and polymorphisms in the human gene. Biochem Biophys Res Commun 226:226–230Google Scholar
  91. Sampietro M, Piperno A, Lupica L et al. (1998) High prevalence of the His63Asp HFE mutation in Italian patients with porphyria cutanea tarda. Hepatology 27: 181–184PubMedGoogle Scholar
  92. Sarkany RPE, Cox TM (1994) Recessive inheritance of erythropoietic protoporphyria with liver failure. Lancet 343: 1394–1396PubMedGoogle Scholar
  93. Scarlett YV, Brenner DA (1998) Porphyrias. J Clin Gastroenterol 27: 192–198PubMedGoogle Scholar
  94. Sixel-Dietrich F, Doss M (1985) Hereditary uroporphyrinogen-decarboxylase deficiency predisposing porphyria cutanea tarda (chronic hepatic porphyria) in females after oral contraceptive medication. Arch Dermatol Res 278: 13–16PubMedGoogle Scholar
  95. Stein JA, Tschudy DP (1970) Acute intermittent porphyria. Medicine (Baltimore) 49: 1–16Google Scholar
  96. Steinmüller T, Doss MO, Steffen R et al. (1992) Lebertransplantation bei erythrohepatischer Protoporphyrie. Dtsch Med Wochenschr 117: 1097–1102PubMedGoogle Scholar
  97. Stölzel U, Kostler E, Koszka C et al. (1995) Low prevalence of hepatitis C virus infection in porphyria cutanea tarda in Germany. Hepatology 21: 1500–1503PubMedGoogle Scholar
  98. Stölzel U, Schuppan D, Tillmann HL et al. (2002) Autoimmunity and HCV infection in porphyria cutanea tarda: a controlled study. Cell Mol Biol 48(1): 43–47PubMedGoogle Scholar
  99. Stuart K, Busfield F, Jazwinska E et al. (1998) The C282Y mutation in the haemochromatosis gene (HFE) and hepatitis C virus infection are independent cofactors for porphyria cutanea tarda in Australian patients. J Hepatology 28: 404–409Google Scholar
  100. Todd DJ (1998) Molecular genetics of erythropoietic protoporphyria. Photodermatol Photoimmunol Photomed 14: 70–73 Cheng K, Ashby D, Smyth R (2000) Ursodeoxycholic acid for cystic fibrosis-related liver disease. Cochrane Database Syst Rev 2: CD000222PubMedGoogle Scholar
  101. Cohn JA, Strong TV, Picciotto ME et al. (1993) Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells. Gastroenterology 105: 1857–1864PubMedGoogle Scholar
  102. Colombo C, Battezzati PM (1996) Hepatobiliary manifestations of cystic fibrosis. Eur J Gastroenterol Hepatol 8: 748–754PubMedGoogle Scholar
  103. Colombo C, Battezzati PM, Podda M et al. (1996) Ursodeoxycholic acid for liver disease associated with cystic fibrosis: a double-blind multicenter trial. Hepatology 23: 1484–1190PubMedGoogle Scholar
  104. Colombo C, Battezzati PM, Strazzabosco M et al. (1998) Liver and biliary problems in cystic fibrosis. Semin Liver Dis 18: 227–235PubMedGoogle Scholar
  105. Colombo C, Crosignani C, Battezzati PM (1999) Liver involvement in cystic fibrosis. J Hepatol 31: 946–954PubMedGoogle Scholar
  106. Colombo C, Comi S, Bettinardi N (2000) The liver in cystic fibrosis. In: Northfield TC, Ahmed HA, Jazrawi RP, Zentler-Munro PL (eds) Bile acids in hepatobiliary disease. Kluwer Academic Publishers, Dordrecht, pp 66–71Google Scholar
  107. Debray D, Lykavieris P, Gauthier F et al. (1999) Outcomes of liver cirrhosis in cystic fibrosis. Management of portal hypertension. J Hepatol 31: 77–83PubMedGoogle Scholar
  108. Lepage G, Paradis K, Lacaille F et al. (1997) Ursodeoxycholic acid improves the hepatic metabolism of essential fatty acids and retinol in children with cystic fibrosis. J Pediatr 130: 52–58PubMedGoogle Scholar
  109. Lindblad A, Hulcrantz ET, Strandvik B (1992) Bile duct destruction and collagen deposition: a prominent ultrastructural feature of the liver in cystic fibrosis. Hepatology 16: 372–381PubMedGoogle Scholar
  110. Lindblad A, Glaumann H, Strandvik B (1998) A two-year prospective study of the effect of ursodeoxycholic acid on urinary bile acid excretion and liver morphology in cystic fibrosis-associated liver disease. Hepatology 23: 166–174Google Scholar
  111. Lindblad A, Glaumann H, Strandvik B (1999) Natural history of liver disease in cystic fibrosis. Hepatology 30: 1151–1158PubMedGoogle Scholar
  112. Scott-Jup PR, Lama M, Tanner MS (1991) Prevalence of liver disease in cystic fibrosis. Arch Dis Child 66: 698–701Google Scholar
  113. Buxbaum J (1998) The Amyloidoses. In: Klippel JH, Dippe PA (eds) Rheumatology, 2nd ed. Mosby, St. Louis, pp 8.27.1–10Google Scholar
  114. Caballerfa J, Bruguera M, Sole M et al. (2001) Hepatic familial amyloidosis caused by a new mutation in the AI gene: clinical and pathological features. Am J Gastroenterol 96: 1872–1876Google Scholar
  115. Gertz MA, Kyle RA (1997) Hepatic amyloidosis: clinical appraisal in 77 patients. Hepatology 25: 118–121PubMedGoogle Scholar
  116. Holmgren G, Ericson BG, Groth CG et al. (1993) Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet 341: 1113–1116PubMedGoogle Scholar
  117. Llovat LB, Persey MR, Madhoo S et al. (1998) The liver in systemic amyloidosis: insights from 1231 serum amyloid P component scintigraphy in 484 patients. Gut 42: 727–734Google Scholar
  118. Peters RA, Koukoulis G, Gimson A et al. (1994) Primary amyloidosis and severe intrahepatic cholestatic jaundice. Gut 35: l322–l325Google Scholar
  119. Saeger W, Röcken C (1998) Amyloid: Mikroskopischer Nachweis, Klassifikation und klinischer Bezug. Pathologe 19: 345–354PubMedGoogle Scholar
  120. Badizadegan K, Perez-Atayde AR (1997) Focal glycogenosis of the liver in disorders of ureagenesis: its occurrence and diagnostic significance. Hepatology 26: 365–373PubMedGoogle Scholar
  121. Bove KE (2000) Liver disease caused by disorders of bile acid synthesis. Clin Liver Dis 4: 831–848PubMedGoogle Scholar
  122. Grompe M (2001) The pathophysiology and treatment of hereditary tyrosinemia Type 1. Semin Liver Dis 21: 563–571PubMedGoogle Scholar
  123. Mandel H, Hartmann C, Berkowitz D et al. (2001) The hepatic mitochondrial DNA depletion syndrome: ultrastructural changes in liver biopsies. Hepatology 34: 776–784PubMedGoogle Scholar
  124. Morris AAM (1999) Mitochondrial respiratory chain disorders and the liver. Liver 19: 357–368PubMedGoogle Scholar
  125. Treem WR (1999) Beta oxidation defects. Biochemistry and clinical. Clin Liver Dis 3: 49–67Google Scholar
  126. Vu TH, Tanji K, Holve SA et al. (2001) Navajo neurohepatopathy: a mitochondrial DNA depletion syndrome? Hepatology 34: 116–120PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • H. Dancygier
  • M. O. Doss
  • H. Frühauf
  • U. Gross
  • A. Kühnel
  • C. Niederau
  • C. Smolarek
  • U. Stölzel
  • W. Stremmel

There are no affiliations available

Personalised recommendations