Skip to main content

Energieumsatz und Energiehaushalt

  • Chapter
  • 504 Accesses

Zusammenfassung

Leben basiert auf dem Zusammenspiel einer Vielzahl aktiver zellulärer Prozesse. Die hierfür notwendige Energie wird aus der Oxidation der mit der Nahrung zugeführten Kohlenhydrate, Fette und Proteine gewonnen. Für eine normale Zellfunktion ist die quantitative und qualitative Balance zwischen der umgesetzten und der aufgenommenen Energie eine Conditio sine qua non, jede Imbalance führt langfristig zu Funktionsstörungen oder gar zum Tode des Makroorganismus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aub JC, DuBois EF (1917) Clinical calorimetry. The basal metabolism of old men. Arch Intern Med 19:823–831

    Article  CAS  Google Scholar 

  2. Behnke AR (1941) Physiologic studies pertaining to deep sea diving and activation, especially in relation to the fat content and composition of the body. Harvey Lect 37:198–226

    Google Scholar 

  3. Black AE, Coward WA, Cole TJ, Prentice AM (1996) Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr 50:72–92

    PubMed  CAS  Google Scholar 

  4. Boothby WM, Berkson J, Dunn HL (1936) Studies of the energy of metabolism of normal individuals: A standard for basal metabolism, with a normogram for clinical applications. Am J Physiol 116:468–484

    Google Scholar 

  5. Cunningham JJ (1991) Body composition as a determinant of energy expenditure: a synthetic review and a proposed general prediction equation. Am J Clin Nutr 54:963–969

    PubMed  CAS  Google Scholar 

  6. Cuthbertson DP (1942) Post-shock metabolic response. Lancet 1: 433–437

    Article  Google Scholar 

  7. D’Alessio DA, Kavle EC, Mozzoli MA et al. (1988) Thermic effect of food in lean and obese men. J Clin Invest 81:1781–1789

    Article  PubMed  Google Scholar 

  8. de Van Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9

    PubMed  Google Scholar 

  9. Durnin JVGA (1991) Practical estimates of energy requirements. Am Inst Nutr 121:1907–1913

    CAS  Google Scholar 

  10. Elia M (1992) Energy expenditure in the whole body. In: Kinney JM, Tucker HN (eds) Energy metabolism. Tissue determinants and cellular corollaries. Raven Press, New York, pp 19–59

    Google Scholar 

  11. Fauth U, Heinrichs W, Halmágyi M (1987) Stoffwecheselmodelle zur Interpretation indirekt kalorischer Messungen bei Intensivpatienten. Infusionsther Transfusionsmed 14:48–59

    CAS  Google Scholar 

  12. Fleisch A (1951) Le métabolisme basal standard et sa détermination au moyen du »Metabocalculator«. Helv Med Acta 18:23–44

    PubMed  CAS  Google Scholar 

  13. Harris JA, Benedict FG (1919) A biometrie study of basal metabolism in man. Carnegie Institution of Washington (publ. no. 279

    Google Scholar 

  14. Hayes MA, Timmins AC, Yau EH et al. (1997) Oxygen transport patterns in patients with sepsis syndrome or septic shock: influence of treatment and relationship to outcome. Crit Care Med 25:926–936

    Article  PubMed  CAS  Google Scholar 

  15. Heini AF, Minghelli G, Diaz E, Prentice AM, Schutz Y (1996) Free-living energy expenditure assessed by two different methods in rural Gambian men. Eur J Clin Nutr 50:284–289

    PubMed  CAS  Google Scholar 

  16. Himms-Hagen J (1989) Brown adipose tissue thermogenesis and obesity. Prog Lipid Res 28:67–115

    Article  PubMed  CAS  Google Scholar 

  17. Illner K, Brinkmann G, Heller M et al. (2000) Metabolically active components of fat free mass and resting energy expenditure in nonobese adults. Am J Physiol 278:E308–E315

    CAS  Google Scholar 

  18. Jequier E, Schutz Y (1988) Energy expenditure in obesity and diabetes. Diabetes Metab Rev 4:583–593

    Article  PubMed  CAS  Google Scholar 

  19. Kinney JM, Duke JH, Long CL, Gump FE (1970) Tissue fuel and weight loss after injury. J Clin Pathol 23:65–72

    Article  Google Scholar 

  20. Kinney JM, Morgan AP, Domingues FJ, Gildner KJ (1964) A method for continuous measurement of gas exchange and expired radioactivity in acutely ill patients. Metabolism 13:205–211

    Article  PubMed  CAS  Google Scholar 

  21. Kreymann G, Grosser S, Buggisch P et al. (1993) Oxygen uptake and resting energy expenditure in sepsis, sepsis syndrome and septic shock. Crit Care Med 27:1012–1019

    Article  Google Scholar 

  22. Lavoisier AL, Laplace PS (1862) Mémoire sur la chaleur. (Mémoires de l’Académie des Sciences, année 1780). In: (Anonymous) Mémoires de chimie et de physique. Imprimerie Impériale, Paris, pp 283–334

    Google Scholar 

  23. Long CL, Schaffel N, Geiger JW et al. (1979) Metabolic response to injury and illness: Estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN 3:452–456

    Article  CAS  Google Scholar 

  24. Löffler G, Petrides PE (1998) Biochemie und Pathobiochemie, 6. Aufl. Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  25. Marks KH, Gunther RC, Rossi JA, Maisels MJ (1980) Oxygen consumption and insensible water loss in premature infants under radiant heaters. Pediatrics 66:228–232

    PubMed  CAS  Google Scholar 

  26. Monk DN, Plank LD, Franch-Arcas G et al. (1996) Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg 223:395–405

    Article  PubMed  CAS  Google Scholar 

  27. Moore FD (1963) The body cell mass and its supporting environment; body composition in health and disease. Saunders, Philadelphia

    Google Scholar 

  28. Moriyama S, Okamoto K, Tabira Y et al. (1999) Evaluation of oxygen consumption and resting energy expenditure in critically ill patients with systemic inflammatory response syndrome. Crit Care Med 27: 2133–2136

    Article  PubMed  CAS  Google Scholar 

  29. Newsholme EA (1980) Sounding Board. A possible metabolic basis for the control of body weight. N Engl J Med 302:400–405

    Article  PubMed  CAS  Google Scholar 

  30. Plank LD, Connolly AB, Hill GL (1998) Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis. Ann Surg 228:146–158

    Article  PubMed  CAS  Google Scholar 

  31. Prentice AM, Davies HL, Coward DA et al. (1985) Unexpected low levels of energy expenditure in healthy woman. Lancet 22: 1419–1422

    Article  Google Scholar 

  32. Ralley FE, Wynands E, Ramsay JG et al. (1988) The effects of shivering on oxygen consumption and carbon dioxide production in patients rewarming from hypothermic cardio-pulmonary bypass. Can J Anaesth 35:332–337

    Article  PubMed  CAS  Google Scholar 

  33. Robertson JD, Reid DD (1952) Standards for the basal metabolism of normal people in Britain. Lancet 10:940–943

    Article  Google Scholar 

  34. Roe CF, Kinney JM (1965) The caloric equivalent of fever — II: influence of major trauma. Ann Surg 161:140–147

    Article  PubMed  CAS  Google Scholar 

  35. Rubner M (1894) Die Quelle der thierischen Wärme. Z Biol 30:73–142

    Google Scholar 

  36. Sato N, Oyamatsu M, Tsukada K et al. (1997) Serial changes in contribution of substrates to energy expenditure after transthoracic esophagectomy for cancer. Nutrition 13:100–103

    Article  PubMed  CAS  Google Scholar 

  37. Schoeller DA, Hnilicka JM (1996) Reliability of the doubly labeled water method for the measurement of total daily energy expenditure in free-living subjects. J Nutr 126: S348–S354

    Google Scholar 

  38. Schoeller DA, van Santen E (1982) Measurement of energy expenditure in humans by doubly labeled water method. J Appl Physiol 53: 955–959

    PubMed  CAS  Google Scholar 

  39. Schofield WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39 (Suppl 1): 5–41

    PubMed  Google Scholar 

  40. Shoemaker WC, Appel PL, Kram HB (1993) Hemodynamic and oxygen transport responses in survivors and nonsurvivors of high-risk surgery. Crit Care Med 21:977–990

    Article  PubMed  CAS  Google Scholar 

  41. Spurr GB, Barac-nieto M, Maksud MG (1975) Energy expenditure cutting sugercane. J Appl Physiol 39:990–996

    PubMed  CAS  Google Scholar 

  42. Weinsier RL, Schutz Y, Bracco D (1992) Reexamination of the relationship of resting metabolic rate to fat-free mass and to the metabolically active components of fat-free mass in humans. Am J Clin Nutr 55: 790–794

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kreymann, K.G. (2003). Energieumsatz und Energiehaushalt. In: Stein, J., Jauch, KW. (eds) Praxishandbuch klinische Ernährung und Infusionstherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55896-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55896-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62625-8

  • Online ISBN: 978-3-642-55896-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics