Gas-Phase Epitaxy Grown InP(001) Surfaces From Real-Space Finite-Difference Calculations

  • W. G. Schmidt
  • P. H. Hahn
  • K. Seino
  • M. Preuß
  • F. Bechstedt
Conference paper

Summary

Density-functional calculations based on finite-difference discretization and multigrid acceleration are used to explore the atomic and spectroscopic properties of P-rich InP(001)(2x1) surfaces grown in gas-phase epitaxy. These surfaces have been reported to consist of a semiconducting monolayer of buckled phosphorus dimers. This apparent violation of the electron counting principle was explained by effects of strong electron correlation. Our calculations show that the (2x1) reconstruction is not at all a clean surface: it is induced by hydrogen adsorbed in an alternating sequence on the buckled P-dimers. Thus, the microscopic structure of the InP growth plane relevant to standard gas-phase epitaxy conditions is resolved and shown to obey the electron counting rule.

Keywords

Entropy Phosphorus GaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).CrossRefGoogle Scholar
  2. 2.
    W. G. Schmidt, J. L. Fattebert, J. Bernholc, and F. Bechstedt, Surf. Rev. Lett. 6, 1159 (1999).CrossRefGoogle Scholar
  3. 3.
    P. H. Hahn, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 88, 016402 (2002).CrossRefGoogle Scholar
  4. 4.
    W. G. Schmidt, S. Glutsch, P. H. Hahn, and F. Bechstedt, Phys. Rev. B 67, 085307 (2003).CrossRefGoogle Scholar
  5. 5.
    A. Brandt, Math. Comp. 31, 333 (1977).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B 52, R5471 (1995).CrossRefGoogle Scholar
  7. 7.
    E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B 54, 14362 (1996).CrossRefGoogle Scholar
  8. 8.
    J. Bernholc, E. L. Briggs, C. Bungaro, M. B. Nardelli, J. L. Fattebert, K. Rapcewicz, C. Roland, W. G. Schmidt, and Q. Zhao, phys. stat. sol. (b) 217, 685 (2000).CrossRefGoogle Scholar
  9. 9.
    J. L. Fattebert and J. Bernholc, Phys. Rev. B 62, 1713 (2000).CrossRefGoogle Scholar
  10. 10.
    J. L. Fattebert, J. Comput. Phys. 149, 75 (1999).MATHCrossRefGoogle Scholar
  11. 11.
    W. Mönch, Semiconductor Surfaces and Interfaces (Springer-Verlag, Berlin, 1995).Google Scholar
  12. 12.
    Q.-K. Xue, T. Hashizume, and T. Sakurai, Prog. Surf. Sci. 56, 1 (1997).CrossRefGoogle Scholar
  13. 13.
    W. G. Schmidt, Appl. Phys. A 75, 89 (2002).CrossRefGoogle Scholar
  14. 14.
    L. Li, B.-K. Han, Q. Fu, and R. F. Hicks, Phys. Rev. Lett. 82, 1879 (1999).CrossRefGoogle Scholar
  15. 15.
    P. Vogt, T. Hannappel, S. Visbeck, K. Knorr, N. Esser, and W. Richter, Phys. Rev. B 60, R5117 (1999).CrossRefGoogle Scholar
  16. 16.
    M. D. Pashley, Phys. Rev. B 40, 10481 (1989).CrossRefGoogle Scholar
  17. 17.
    L. Li, B.-K. Han, D. Law, C. H. Li, Q. Fu, and R. F. Hicks, Appl. Phys. Lett. 683, 75 (1999).Google Scholar
  18. 18.
    L. Li, Q. Fu, C. H. Li, B.-K. Han, and R. F. Hicks, Phys. Rev. B 61, 10223 (2000).CrossRefGoogle Scholar
  19. 19.
    B. X. Yang and H. Hasegawa, Jpn. J. Appl. Phys. 33, 742 (1994).CrossRefGoogle Scholar
  20. 20.
    K. B. Ozanyan, P. J. Parbrook, M. Hopkinson, C. R. Whitehouse, Z. Sobiesierski, and D. I. Westwood, J. Appl. Phys. 82, 474 (1997).CrossRefGoogle Scholar
  21. 21.
    V. P. LaBella, Z. Ding, D. W. Bullock, C. Emery, and P. M. Thibado, J. Vac. Sci. Technol. A 18, 1492 (2000).CrossRefGoogle Scholar
  22. 22.
    O. Pulci, K. Lüdge, W. G. Schmidt, and F. Bechstedt, Surf. Sci. 464, 272 (2000).CrossRefGoogle Scholar
  23. 23.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetCrossRefGoogle Scholar
  24. 24.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
  25. 25.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetCrossRefGoogle Scholar
  26. 26.
    J. R. Chelikowski, N. Troullier, and Y. Saad, Phys. Rev. Lett. 72, 1240 (1994).CrossRefGoogle Scholar
  27. 27.
    L. Collatz, The Numerical Treatment of Differential Equations (Springer-Verlag, Berlin, 1966).Google Scholar
  28. 28.
    J. L. Fattebert, BIT 36, 509 (1996).MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    W. G. Schmidt, P. H. Hahn, and F. Bechstedt, in High Performance Computing in Science and Engineering 2001 (Springer-Verlag, Berlin, 2002), Chap. GaAs and In As (001) Surface Structures from Large-scale Real-space Multigrid Calculations, p. 178.Google Scholar
  30. 30.
    W. G. Schmidt, Appl. Phys. A 65, 581 (1997).CrossRefGoogle Scholar
  31. 31.
    L. D. Landau and E. M. Lifshitz, Lehrbuch der Theoretischen Physik (Akademie-Verlag, Berlin, 1987), Vol. 5.Google Scholar
  32. 32.
    F. Bechstedt, in Festkoperprobleme / Advances in Solid State Physics, edited by U. Rossler (Vieweg, Braunschweig/Wiesbaden, 1992), Vol. 32, p. 161.Google Scholar
  33. 33.
    W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, Phys. Rev. B. 61, R16335 (2000).CrossRefGoogle Scholar
  34. 34.
    J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).CrossRefGoogle Scholar
  35. 35.
    W. G. Schmidt, P. H. Hahn, F. Bechstedt, N. Esser, P. Vogt, A. Wange, and W. Richter, Phys. Rev. Lett. 90, 126101 (2003).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • W. G. Schmidt
    • 1
  • P. H. Hahn
    • 1
  • K. Seino
    • 1
  • M. Preuß
    • 1
  • F. Bechstedt
    • 1
  1. 1.Computational Materials Science Group, Institut für Festkörpertheorie und Theoretische OptikFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations