Toward Generalized Finite Element Difference Methods for Electro- and Magnetostatics

  • Igor Tsukerman
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 4)


The paper explores a class of “Finite Element Difference” (FED) schemes with Finite Difference-type data structures but based on Finite Element — variational principles. Curved material boundaries are approximated algebraically on relatively coarse regular rectangular or hexahedral grids by a judicious choice of local approximating functions, rather than geometrically on conforming meshes. The grids do not have to resolve small geometric details. The proposed approach combines the ideas of the Generalized Finite Element — Partition of Unity methods, Discontinuous Galerkin Methods and Finite Difference / Finite Volume / Finite Integration Techniques.


Discontinuous Galerkin Method Finite Difference Time Domain Local Discontinuous Galerkin Homogenization Scheme Generalize Finite Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, Douglas N., Brezzi, F., Cockburn, B. and Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Analysis 39, No.5 (2002), 1749–1779.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Babuska I, Caloz G., Osborn J.E.: Special finite-element methods for a class of 2nd-order elliptic problems with rough coefficients, SIAM Journal on Numerical Analysis, 31, No. 4 (1994), 945–981.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Babuska I., Melenk, J.M.: The partition of unity method, International Journal for Numerical Methods in Eng., 40, No. 4, (1997) 727–758.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baker, N.A., Sept, D., Simpson, J., Holst, M.J., and McCammon, J.A.: Electrostatics of nanosystems: Application to microtubules and the ribosome, PNAS, 98, No. 18, (2001), 10037–10041, Scholar
  5. 5.
    Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments, Computer Methods in Applied Mechanics and Engineering, 139, No. 1-4, (1996), 3–47.CrossRefzbMATHGoogle Scholar
  6. 6.
    Bossavit, Alain: Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, San Diego: Academic Press, 1998.Google Scholar
  7. 7.
    Bossavit, A., Kettunen, L.: Yee-like schemes on staggered cellular grids: A synthesis between FIT and FEM approaches, IEEE Trans. Magn. 36, (2000), 861–867.CrossRefGoogle Scholar
  8. 8.
    Bottasso C.L., Micheletti S, Sacco R, The discontinuous Petrov-Galerkin method for elliptic problems, Computer Methods in Applied Mechanics and Engineering, 191, No. 31, 3391–3409, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brenner, S.C.: Poincare-Friedrichs inequalities for piecewise H1 functions, Research Report 2002:01, Department of Mathematics, University of South Carolina (to appear in SIAM Journal on Numerical Analysis).Google Scholar
  10. 10.
    Briggs, E. L., Sullivan, D. J., and Bernholc, J. Real-space multigrid-based approach to large-scale electronic structure calcula-tions, Physical Review B, 54 (1996), No. 20, 14362–14375.Google Scholar
  11. 11.
    Castillo P., Cockburn, B., Perugia, I., and Schöotzau, D.: An a priori error analysis of the local discontinuous galerkin method for elliptic problems, SIAM J. Numer. Analysis 38, No.5, (2000), 1676–1706.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ciarlet, P.G., The finite element method for elliptic problems, Amsterdam; New York: North-Holland Pub. Co. 1980.Google Scholar
  13. 13.
    Clemens, M, Weiland, T.: Magnetic field simulation using Conformai FIT formulations, IEEE Trans Magn. 38, No. 2 (2002), 389–392.CrossRefGoogle Scholar
  14. 14.
    Cockburn, B., Karniadakis, G.E., and Shu, C.-W., The development of discontinuous Galerkin methods, in Discontinuous Galerkin Methods. Theory, Computation and Applications, B. Cockburn, G.E. Karniadakis, and C.-W. Shu, eds., Lecture Notes in Comput. Sci. Engrg. 11, Springer-Verlag, New York (2000), 3–50.Google Scholar
  15. 15.
    Collatz, Lothar, The numerical treatment of differential equations, New York: Springer, 1966.Google Scholar
  16. 16.
    Cortis, C.M., Friesner, R.A.: Numerical solution of the Poisson-Boltzmann equation using tetrahedral finite-element meshes, Journal of Computational Chemistry, 18, No. 13, (1997), 1591–1608.CrossRefGoogle Scholar
  17. 17.
    Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equation, RAIRO Anal. Numer. 7, R-3 (1973), 33–76. MR 49:8401.MathSciNetGoogle Scholar
  18. 18.
    Dey, S., Mittra, R.: A conformai finite-difference time-domain technique for modeling cylindrical dielectric resonators, IEEE Transactions on Microwave Theory and Techniques, 47 (1999), No. 9, 1737–1739.CrossRefGoogle Scholar
  19. 19.
    Dolejsi, V, Feistauer, M, Felcman, J.: On the discrete Friedrichs inequality for nonconforming finite elements, Numerical Functional Analysis and Optimization, 20 (1999), No. 5–6, 437–447.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Duarte, C.A., Babuska, L., Oden, J.T.: Generalized finite element methods for three-dimensional structural mechanics problems, Computers & Structures, 77 (2000), No. 2, 215–232.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Fogolari, F., Esposito, G., Viglino, P., Molinari, H.: Molecular mechanics and dynamics of biomolecules using a solvent continuum model, Journal of Computational Chemistry, 22 (2001), No.15, 1830–1842.CrossRefGoogle Scholar
  22. 22.
    Hiptmair, R.: Discrete Hodge operators, Numer. Math. 90 (2001), 265–289.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Knobloch, P.: Uniform validity of discrete Friedrichs' inequality for general nonconforming finite element spaces, Numerical Functional Analysis and Optimization, 22 (2001), No. 1, 107–126.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Krietenstein, B., Schuhmann, R., Thoma, P., Weiland T.: The perfect boundary approximation technique facing the big challenge of high precision field computation, Proceedings of the XIX International Linear Accelerator Conference (LINAC 98), Chicago, USA (1998), 860–862.Google Scholar
  25. 25.
    Mattiussi, C.: An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology, Journal of Computational Physics 133 (1997), No. 2, 289–309.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Meguid, S.A., Zhu, Z.H.: A novel fnite element for treating inhomogeneous solids. International Journal for Numerical Methods in Engineering, 38 (1995), 1579–1592.CrossRefzbMATHGoogle Scholar
  27. 27.
    Melenk, J.M., Babuška, I.: The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139 (1996), 289–314.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Moskow, S., Druskin, V., Habashy, T., Lee, P., Davydycheva, S.: A finite difference scheme for elliptic equations with rough coefficients using a Cartesian grid nonconforming to interfaces, SIAM J. on Numerical Analysis, 36 (1999), No. 2, 442–464.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Oden, J. T., Babuska, I., and Baumann, C.E.: A discontinuous hp finite element method for diffusion problems, Journal of Com-putational Physics, 146 (1998), 491–519.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Plaks, A., Tsukerman, I., Painchaud, S., and Tabarovsky, L.: Multigrid methods for open boundary problems in geophysics, IEEE Trans. Magn., 36 (2000), No. 4, p.633–636.CrossRefGoogle Scholar
  31. 31.
    Plaks, A., Tsukerman, I, Friedman, G., Yellen, B.: Generalized Finite Element Method for magnetized nanoparticles, to appear in IEEE Trans. Magn., May 2003.Google Scholar
  32. 32.
    Proekt, L., Tsukerman I.: Method of overlapping patches for electromagnetic computation, IEEE Trans. Magn., 38 (2002), No. 2, 741–744.CrossRefGoogle Scholar
  33. 33.
    Sagui, C. and Darden, T.A.: Molecular dynamics simulations of biomolecules: long-range electrostatic effects, Annu. Rev. Bio-phys. Biomol. Struct. 28 (1999), 155–79.CrossRefGoogle Scholar
  34. 34.
    Sagui, C. and Darden, T.: Multigrid methods for classical molecular dynamics simulations of biomolecules, Journal of Chemical Physics, 114 (2001), No. 15.Google Scholar
  35. 35.
    Schuhmann, R. and Weiland, T.: A stable interpolation technique for FDTD on non-orthogonal grids, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 11 (1998), 299–306.CrossRefzbMATHGoogle Scholar
  36. 36.
    Schuhmann, R. and Weiland, T.: Recent advances in finite integration technique for high frequency applications, invited paper, Proceedings of SCEE-2002, Eindhoven, June 2002.Google Scholar
  37. 37.
    Soh, A.K., Long, Z.F.: Development of two-dimensional elements with a central circular hole, Comput. Methods Appl. Mech. Engrg., 188 (2000), 431–440.CrossRefzbMATHGoogle Scholar
  38. 38.
    Strang, G., Variational crimes in the ?nite element method, in: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.R. Aziz, ed., New York: Academic Press, 1972, 689–710.Google Scholar
  39. 39.
    Strouboulis T., Babuska, I. Copps, K.L.: The design and analysis of the Generalized Finite Element Method, Computer Methods in Applied Mechanics and Engineering, 181, (2000), No. 1–3, 43–69.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Tarhasaari, T, Kettunen, L, Bossavit, A.: Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques, IEEE Trans. Magn. 35: (1999) No. 3, 1494–1497.CrossRefGoogle Scholar
  41. 41.
    Tonti, E.: Finite formulation of electromagnetic field, IEEE Trans. Magn. 38 (2002), No. 2, 333–336.CrossRefGoogle Scholar
  42. 42.
    Tsukerman, I.: Spurious solutions, paradoxes and misconceptions in computational electromagnetics, to appear in IEEE Trans. Magn., May 2003.Google Scholar
  43. 43.
    Tsukerman, I.: Finite Element Difference schemes for electro-and magnetostatics, Proceedings of Compumag'2003, Saratoga Springs.Google Scholar
  44. 44.
    Wiegmann, A., and Bube, K.P., The explicit-jump immersed interface method: Finite difference methods for PDEs with piece-wise smooth solutions, SIAM J. Numer. Analysis 37 (2000), No. 3, 827–862. 45. MathSciNetCrossRefzbMATHGoogle Scholar
  45. 46.
    Yu, W. and Mittra, R.: A conformai finite difference time domain technique for modeling curved dielectric surfaces, IEEE Mi-crowave Wireless Comp. Lett., 11 (2001), 25–27.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Igor Tsukerman
    • 1
  1. 1.Department of Electrical and Computer EngineeringThe University of AkronAkronUSA

Personalised recommendations