Stochastic DAEs in Transient Noise Simulation

  • Renate Winkler
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 4)


In this paper we describe how stochastic differential-algebraic equations (SDAEs) arise as a mathematical model for network equations that are influenced by additional sources of Gaussian white noise. We give the necessary analytical theory for the existence and uniqueness of strong solutions, provided that the systems have noise-free constraints and are uniformly of DAE-index 1. We express these conditions in terms of the network-topology for reasons of use within a circuit simulator. In the second part we analyze discretization methods. Due to the differential-algebraic structure, implicit methods will be necessary. By the examples of the drift-implicit Euler and Milstein schemes we show how drift-implicit schemes for SDEs can be adapted to become directly applicable to stochastic DAEs and prove that the convergence properties of these methods known for SDEs are preserved. For illustration we apply the drift-implicit Euler scheme to an oscillator circuit.


Strong Convergence Noise Source Strong Solution Sample Path Shot Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Ascher and L. Petzold. Computer methods for ordinary differential equations and differential-algebraic equations. SIAM, 1998.Google Scholar
  2. 2.
    A. Blum. au]Elektronisches_Rauschen. Teubner, 1996.Google Scholar
  3. 3.
    A. Demir. Analysis and simulation of noise in nonlinear electronic circuits and systems. PhD thesis, University of California, Berkeley, 1997.zbMATHGoogle Scholar
  4. 4.
    A. Demir and A. Sangiovanni-Vincentelli. Analysis and simulation of noise in nonlinear electronic circuits and systems. Kluwer Academic Publishers, 1998.Google Scholar
  5. 5.
    D. Estevez Schwarz and C. Tischendorf. Structural analysis for electronic circuits and consequences for MNA. Int. J. Circ. Theor. Appl., 28:131–162, 2000.CrossRefzbMATHGoogle Scholar
  6. 6.
    M. Günther and U. Feldmann. CAD-based electric-circuit modeling in industry I. mathematical structure and index of network equations. Surv. Math. Ind., 8:97–129, 1999.zbMATHGoogle Scholar
  7. 7.
    D.J. Higham. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43:525–546, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    G. Maruyama. Continuous Markov processes and stochastic equations. Rend. Circolo Math. Palermo, 4:48–90, 1955.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    R. März. Numerical methods for differential-algebraic equations. Acta Numérica 141–198, 1992.Google Scholar
  10. 10.
    G.N. Milstein and M.V. Tretyakov. Mean-square numerical methods for stochastic differential equations with small noise. SIAM J.Sci. Corn-put., 18:1067–1087, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    C. Penski. Analysis and numerical integration of stochastic differential-algebraic equations and applications in electronic circuit simulation. Preprint TUM-M9907, Technische Universität, München, 1999, (
  12. 12.
    C. Penski. A new numerical method for SDEs and its application in circuit simulation. J. Comput. Appl. Math., 115:461–470, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    O. Schein. Stochastic differential algebraic equations in circuit simulation. PhD thesis, Technische Universität Darmstadt, 1999.Google Scholar
  14. 14.
    O. Schein and G. Denk. Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits. J. Comput. Appl. Math., 100:77–92, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J. Sieber. Local error control for general index-1 and index-2 differential algebraic equations. Preprint 97-21, Humboldt-Universität, Berlin, 1997.Google Scholar
  16. 16.
    C. Tischendorf. Topological index calculation of DAEs in circuit simulation. Surv. Math. Ind., 8(3-4):187–199, 1999.MathSciNetzbMATHGoogle Scholar
  17. 17.
    L. Weiß. Rauschen in nichtlinearen elektronischen Schaltungen und Bauelementen — ein thermodynamischer Zugang. PhD thesis, Otto-von-Guericke Universität Magdeburg, 1999.Google Scholar
  18. 18.
    L. Weiß and W. Mathis. A thermodynamical approach to noise in nonlinear networks. Int. J. Circ. Theor. Appl., 26:147–165, 1998.CrossRefzbMATHGoogle Scholar
  19. 19.
    R. Winkler. Stochastic differential algebraic equations and applications in circuit simulation. Preprint 01-13, Humboldt-Universität, Berlin, 2001, submitted to J. Comput. Appl. Math. (

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Renate Winkler
    • 1
  1. 1.Institut für MathematikHumboldt-Universität BerlinGermany

Personalised recommendations