Advertisement

The Electro—Quasistatic Model in Different Applications

  • Ute Schreiber
  • Jürgen Flehr
  • Victor Motrescu
  • Ursula van Rienen
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 4)

Abstract

An electromagnetic field can be considered as slowly varying if the wavelength is large compared to the problem region. In the electro-quasistatic case it then may be assumed that the time-derivative of the magnetic flux is negligible, whereas the displacement currents have to be taken into account. Under these assumptions Maxwell’s equations for time harmonic fields reduce to a complex Poisson’s equation and discretization yields a complex symmetric system of equations. Krylov-subspace methods with an algebraic multigrid (AMG) preconditioner are used for fast solution. The electro-quasistatic model is applicable in many different constellations. This paper deals with applications from three different fields: high-voltage engineering, neural sensor-actor systems and the influence of slowly varying fields on human tissue.

Keywords

Water Droplet Electric Field Strength Algebraic Multigrid Method Finite Integration Technique Complex Symmetric Linear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.A. Haus, J.R. Melcher, Electromagnetic Fields and Energy, Prentice-Hall. Inc., 1989.Google Scholar
  2. 2.
    A. Bunse-Gerstner, R. Stöver, On a Conjugate Gradient-Type Method for Solving Complex Symmetric Linear Systems, Lin.Alg.Appl., Vol. 287 (1999): 105–123.CrossRefzbMATHGoogle Scholar
  3. 3.
    M. Clemens, R. Schuhmann, U. van Rienen, T. Weiland, Modern Krylov Subspace Methods in Electromagnetic Field Computation Using the Finite Integration Theorie, ACES Journal, Vol. 11 (1996): 70–84.Google Scholar
  4. 4.
    M. Clemens, T. Weiland, U. van Rienen, Comparison of Krylov-Type Methods for Complex Linear Systems Applied to High-Voltage Problems, IEEE-T.Mag., Vol. 34 (1998): 3335–3338.CrossRefGoogle Scholar
  5. 5.
    J. Dudel, R. Menze, R.F. Schmidt, Neurowissenschaft, Springer, 2001.Google Scholar
  6. 6.
    R.W. Freund, N.M. Nachtigal, An Implementation of the QMR Method Based on Coupled Two-Term Recurrences, SIAM J.Sci.Comput., Vol. 15 (1994): 297–312.MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Keener, J. Sneyd, au]Mathematical_Physiology, Springer, 2nd printing, 2001.Google Scholar
  8. 8.
    S. Keim, D. König, Study of the Behavior of Droplets on Polymeric Surfaces under the Influence of an Applied Electrical Field, Proc. IEEE-CEIDP (1999): 707–710.Google Scholar
  9. 9.
    M. Kneuer, Diploma Thesis, TU Darmstadt, 2000.Google Scholar
  10. 10.
    MAFIA 4, CST GmbH, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany.Google Scholar
  11. 11.
    S. Reitzinger, U. Schreiber, U. van Rienen, Algebraic Multigrid Methods for Complex Symmetric Matrices and Applications, Journal for Computational and Applied Mathematics, to appear.Google Scholar
  12. 12.
    S. Reitzinger, PEBBLES — User’s Guide, 1999, www.sfbO13.uni-linz.ac.at.
  13. 13.
    U. van Rienen, Numerical Methods in Computational Electrodynamics — Linear Systems in Practical Applications, Springer-LNCSE, Vol. 12, 2000.Google Scholar
  14. 14.
    U. Schreiber, U. van Rienen, S. Keim, Simulation of Electric Field Strength and Force Density on Contaminated H-V Insulators, Springer-LNCSE, Vol. 18 (2001): 79–86.Google Scholar
  15. 15.
    T. Weiland, A discretization method for the solution of Maxwell’s equation for six-component fields, Electron. Commun. AEÜ, Vol. 31 (1977): 116–120.Google Scholar
  16. 16.
    E.K. Yeargers, R.W. Shonkwiler, J.V. Herod, An Introduction to the Mathematics of Biology, Birkhäuser, 1996.Google Scholar
  17. 17.
    F.B. Sachse et al., Comparison of Solutions to the forward Problem in Electrophysiology with homogeneous, heterogeneous and anisotropic Impedance Model, Biomedizinische Technik, Vol. 42 (1997): 277–280.CrossRefGoogle Scholar
  18. 18.
    H. Krüger, Zur numerischen Berechnung transienter elektromagnetischer Felder in gyrotopen Materialien, Der Andere Verlag, 2000.Google Scholar
  19. 19.
    S. Balay et al., PETSc home page (2001), http://www.mcs.anl.gov/petsc/petsc
  20. 20.
    S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, PETSc Users Manual, Argonne National Laboratory, ANL-95/11 — Revision 2.1.3 (2002).Google Scholar
  21. 21.
    S. Balay, W.D. Gropp, L.C. Mclnnes, B.F. Smith, Efficient Management of Parallelism in Object Oriented Numerical Software Libraries, in E. Arge, A.M. Bruaset, H.P. Langtangen (Eds.): Modern Software Tools in Scientific Computing, Birkhauser (1997): 163–202.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ute Schreiber
    • 1
  • Jürgen Flehr
    • 1
  • Victor Motrescu
    • 1
  • Ursula van Rienen
    • 1
  1. 1.Institute of General Electrical EngineeringRostock UniversityGermany

Personalised recommendations