Advertisement

Numerical Simulation of Resonant Tunneling Diodes with a Quantum-Drift-Diffusion Model

  • Stefano Micheletti
  • Riccardo Sacco
  • Paolo Simioni
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 4)

Abstract

We deal with a Quantum-Drift-Diffusion (QDD) model for the description of transport in semiconductors which generalizes the standard Drift-Diffusion model (DD) through extra terms that take into account some quantum dispersive corrections. We also study numerically the influence on the I-V curve of the electron effective mass, the barrier height and width, and of the ambient temperature. The performance of several linearization algorithms, i.e. a two Gummel-type iterations and the fully-coupled Newton method are also compared.

Keywords

Barrier Height Effective Mass Negative Differential Resist External Voltage Barrier Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ancona, M.G., Iafrate, G.J.: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39 (1989) 9536–9540CrossRefGoogle Scholar
  2. 2.
    Capasso, F.: Physics of quantum electron devices. Springer Verlag, New York, 1989Google Scholar
  3. 3.
    Chen, Z., Cockburn, B., Gardner, C.L.: Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode. J. Comp. Phys. 117 (1995) 274–280CrossRefzbMATHGoogle Scholar
  4. 4.
    Jerome, J.W.: Analysis of charge transport. Springer-Verlag, New York, 1996CrossRefGoogle Scholar
  5. 5.
    Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C.A.: Self-consistent study of the resonant tunneling diode. Phys. Rev. B 39 (1989) 7720–7735CrossRefGoogle Scholar
  6. 6.
    Lengeier, B.: Semiconductor devices suitable for use in cryogenic environments. Low temperature electronics (R.K. Kirschman ed.) IEEE, New York (1986) 62–70Google Scholar
  7. 7.
    Pinnau, R., Unterreiter, A.: The stationary current-voltage characteristics of the quantum drift-diffusion model. SIAM J. Numer. Anal. 37 (1999) 211–245MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Simioni, P.: Modelli macroscopici con correzione quantistica per il trasporto di carica nei semiconduttori. Degree Thesis, Politecnico di Milano, 2001Google Scholar
  9. 9.
    Vinter, B., Chevoir, F.: Scattering processes, coherent and incoherent transport in resonant tunneling structures. Resonant Tunneling in Semiconductors (L. Chang ed.), Plenum Press, New York (1991) 201–211CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stefano Micheletti
    • 1
  • Riccardo Sacco
    • 1
  • Paolo Simioni
    • 1
  1. 1.MOX — Modeling and Scientific Computing, Dipartimento di Matematica “F. Brioschi”MilanoItaly

Personalised recommendations