Calculation of the Self-inductance of a Rectangular Magnetizer Coil

  • Meinolf Klocke
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 4)


The self-inductance of the operating coil of a magnetizing device is calculated using different methods. The winding of the coil under investigation basically consists of copper sheets with rectangular concentric inner and outer contours. These plates form the turns of a Bitter coil. They are stacked together with an electric insulation between them and connected in series to form a helix-like winding. Analytical formulae for cylindrical coils can only be applied as a coarse approximation due to the rectangular cross-section and because of exact geometric measures of current paths such as for arrangements of filamentary wires not being available. More reliable results are obtained, if first self- and mutual inductances of all turns are determined according to Neumann’s formula and the resulting self-inductance is determined afterwards with respect to the connection for all turns in series. A 3D-FEM analysis is carried out in order to verify the method described above and to judge the influence of eddy-current phenomena, i.e. the skin-effect, which might become important in the usual transient operation mode.


Mutual Inductance Outer Contour Partial Conductor Single Turn Collective Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smythe, W.R.: Static and Dynamic Electricity. McGraw-Hill Book Company, 1968.Google Scholar
  2. 2.
    Hannakam, L., Nolle, E.: Programm zur Bestimmung der Gegeninduktivitäten räumlich polygonartiger Leiterschleifen. Archiv für Elektrotechnik 64 (1981), pp. 21–25.CrossRefGoogle Scholar
  3. 3.
    Dornau, U.: Berechnung und Messung der Stirnstreuung von Asynchronmaschinen mit Käfigläufer, PhD thesis, University of Dortmund. Institute of Theoretical Electrical Engineering and Electrical Machines, 1990.Google Scholar
  4. 4.
    Oberretl, K., Kratki, N.: Ausgleichsvorgänge und Schwingungen beim elektrodynamischen Magnetkissen-System. Archiv für Elektrotechnik 57 (1975), pp. 59–64.CrossRefGoogle Scholar
  5. 5.
    Richter, R.: Elektrische Maschinen, Band 1, Birkhäuser Verlag Basel und Stuttgart, 1967.Google Scholar
  6. 6.
    Küpfmüller, K.: Einführung in die theoretische Elektrotechnik. 13., verbesserte Auflage, Springer-Verlag, 1990.CrossRefGoogle Scholar
  7. 7.
    Brauer, J. R.; Brown, B. S.: EMAS, User’s Manual — Version 4, Ansoft Corporation, 1997.Google Scholar
  8. 8.
    Brauer, J. R.: EMAS, Application Manual — Version 4, Ansoft Corporation, 1997. 9. Brauer, J. R.; MacNeal, B. E.: Finite element modeling of multiturn windings with attached electric circuits. IEEE Trans. Magn., vol. 29, March 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Meinolf Klocke
    • 1
  1. 1.University of Dortmund, Institute of Electrical Machines, Drives and Power ElectronicsDortmundGermany

Personalised recommendations