Advertisement

Simulating Multi-tone Free-Running Oscillators with Optimal Sweep Following

  • S. H. M. J. Houben
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 4)

Abstract

A new method for the simulation of circuits with widely-varying time scales is given. The method makes a splitting of the behaviour of the circuit in a fast-varying and a slowly-varying component. The method is attractive because it can handle frequency modulated (FM) circuits, unlike existing methods. Numerical results are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bartel. Multirate ROW methods of mixed type for circuit simulation. In Scientific Computing in Electrical Engineering. Springer, 2000.Google Scholar
  2. 2.
    H.G. Brachtendorf, G. Welsch, R. Laur, and A. Bunse-Gerstner. Numerical steady state analysis of electronic circuits driven by multi-tone signals. Electronic Engineering, 79(2):103–112, 1996.CrossRefGoogle Scholar
  3. 3.
    S.H.M.J. Houben. Circuits in motion — the Simulation of Electrical Oscillators. Ph.D. Thesis, Eindhoven University of Technology, 2003.Google Scholar
  4. 4.
    K. Kundert, J. White, and A. Sangiovanni-Vincentelli. An envelope-following method for efficient transient simulation of switching power and filter circuits. In Proc. IEEE Int. Conf. Computer-Aided Design, pages 446–449, 1988.Google Scholar
  5. 5.
    Kartikeya Mayaram, David C. Lee, Shahriar Moinian, David A. Rich, and Jaijeet Roychowdhury. Computer-aided circuit analysis tools for RFIC simulation: Algorithms, features and limitations. IEEE Transactions on Circuit and Systems — II: Analog and Digital Signal Processing, 47(4):274–286, 2000.CrossRefGoogle Scholar
  6. 6.
    R. Pulch and M. Günther. A method of characteristics for solving multirate partial differential equations in radio frequency applications. Universität Karlsruhe, Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, preprint Nr. 00/07, 2000.Google Scholar
  7. 7.
    Roland Pulch. Numerical techniques for solving multirate partial differential algebraic equations. Presented at Scientific Computing in Electrical Engineering SCEE, 2002.Google Scholar
  8. 8.
    Jaijeet Roychowdhury. Analysing circuits with widely-separated time scales using numerical PDE methods. IEEE Transactions in Circuit and Systems — I: Fundamental Theory and Applications, 48(5):578–594, 2001.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • S. H. M. J. Houben
    • 1
  1. 1.Eindhoven University of TechnologyEindhoven

Personalised recommendations