Advertisement

Electromagnetic Force Densities in a Continuous Medium

  • François Henrotte
  • Kay Hameyer
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 4)

Abstract

The paper introduces a systematic procedure to derive the expression of the Maxwell stress tensor associated with a given expression of the electromagnetic energy density.

Keywords

Force Density Induction Field Virtual Work Principle Magnet Omotive Force Maxwell Stress Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Woodson, H. and Melcher, J.: Electromechanical dynamics I, II and III. John Wiley, 1968.Google Scholar
  2. 2.
    Bossavit A.: Edge-element computation of the force field in deformable bodies. IEEE Transactions on Magnetics 28(2) (1992) 1263–1266.CrossRefGoogle Scholar
  3. 3.
    Bossavit A.: Forces in magnetosatics and their computation. J. Appl. Phys. 67 (9), 1 May 1990.Google Scholar
  4. 4.
    Bossavit A.: On local computation of the electromagnetic force field in deformable bodies. International Journal of Applied Electromagnetics in Materials 2 (1992) 333–343. Elsevier.Google Scholar
  5. 5.
    Coulomb, J.L.: A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness. IEEE Transactions on Magnetics 19(6) (1983) 2514–2519.Google Scholar
  6. 6.
    Ren Z., Razek A.: Local force computation in deformable bodies using edge elements. IEEE Transactions on Magnetics 28(2) (1992) 1212–1215.CrossRefGoogle Scholar
  7. 7.
    Kameari A.: Local force calculation in 3D FEM with edge elements. International Journal of Applied Electromagnetics in Materials, 3 (1993) 231–240.Google Scholar
  8. 8.
    Bossavit A.: ‘Generalized Finite Differences’ in Computational Electromagnetics. Progress in Electromagnetics Research, PIER 32 (2001),F.L. Texeira ed., EMW (Cambridge, Ma), 45–64.Google Scholar
  9. 9.
    Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M.: Analysis, Manifolds and Physics, Elsevier Sciences, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • François Henrotte
    • 1
  • Kay Hameyer
    • 1
  1. 1.Dep. ESAT, Div. ELECTAKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations