Advertisement

Eigenmode Computation of Microwave and Laser Structures Including PML

  • Georg Hebermehl
  • Friedrich-Karl Hübner
  • Rainer Schlundt
  • Thorsten Tischler
  • Horst Zscheile
  • Wolfgang Heinrich
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 4)

Abstract

The field distribution at the ports of the transmission line structure is computed by applying Maxwell’s equations to the structure. Assuming longitudinal homogeneity an eigenvalue problem can be derived, whose solutions correspond to the propagation constants of the modes. The nonsymmetric sparse system matrix is complex in the presence of losses and Perfectly Matched Layer. The propagation constants are found solving a sequence of eigenvalue problems of modified matrices with the aid of the invert mode of the Arnoldi method. Using coarse and fine grids, and a new parallel sparse linear solver, the method, first developed for microwave structures, can be applied also to high dimensional problems of optoelectronics.

Keywords

Eigenvalue Problem Transmission Line Propagation Constant Fine Grid Perfectly Match Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christ, A., Hartnagel, H.L.: Three-Dimensional Finite-Difference Method for the Analysis of Microwave-Device Embedding. IEEE Transactions on Microwave Theory and Techniques 35 (1987) 688–696CrossRefGoogle Scholar
  2. 2.
    Hebermehl, G., Hübner, F.-K., Schlundt, R., Tischler, T., Zscheile, H., Heinrich, W.: Numerical Simulation of Lossy Microwave Transmission Lines Including PML. in: Scientific Computing in Electrical Engineering (ed. U. van Rienen, M. Günther, D. Hecht), Lecture Notes in Computational Science and Engineering, Springer Verlag, (2001) 267–275Google Scholar
  3. 3.
    Sacks, Z. S., Kingsland, D. M., Lee, R., Lee, J.-F.: A Perfectly Matched Anisotropic Absorber for Use as an Absorbing Boundary Condition. IEEE Transactions on Antennas and Propagation 43 (1995) 1460–1463CrossRefGoogle Scholar
  4. 4.
    Weiland, T.: A Discretization Method for the Solution of Maxwell’s Equations for Six-Component Fields. Electronics and Communication (AEÜ) 31 (1977) 116–120Google Scholar
  5. 5.
    Beilenhoff, K., Heinrich, W., Hartnagel, H.L.: Improved Finite-Difference Formulation in Frequency Domain for Three-Dimensional Scattering Problems. IEEE Transactions on Microwave Theory and Techniques 40 (1992) 540–546CrossRefGoogle Scholar
  6. 6.
    Hebermehl, G., Schlundt, R., Zscheile, H., Heinrich W.: Improved Numerical Methods for the Simulation of Microwave Circuits, Surveys on Mathematics for Industry, 9 (1999) 117–129zbMATHGoogle Scholar
  7. 7.
    Hebermehl, G., Hübner, F.-K., Schlundt, R., Tischler, T., Zscheile, H., Heinrich, W.: On the Computation of Eigen Modes for Lossy Microwave Transmission Lines Including Perfectly Matched Layer Boundary Conditions. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 20 (2001) 948–964CrossRefzbMATHGoogle Scholar
  8. 8.
    T. Tischler and W. Heinrich: The Perfectly Matched Layer As Lateral Boundary in Finite-Difference Transmission-Line Analsysis. IEEE Transactions on Microwave Theory and Techniques 48 (2000) 2249–2253CrossRefGoogle Scholar
  9. 9.
    Lehoucq, R. B.: Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration. Rice University, Department of Computational and Applied Mathematics, Technical Report 13 (1995) 1–135MathSciNetGoogle Scholar
  10. 10.
    Sorensen, D. C: Implicit Application of Polynomial Filters in a k-Step Arnoldi Method. SIAM J. Matr. Anal. Apps. 13 (1992) 357–385MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Schenk, O., Gärtner, K., Fichtner, W.: Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors. BIT 40 (2000) 158–176MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Schenk, O., Gärtner, K.: Two-Level Dynamic Scheduling in PARDISO: Improved Scalability on Shared Memory Multiprocessing Systems. Parallel Computing 28 (2002) 187–197CrossRefzbMATHGoogle Scholar
  13. 13.
    Davis, T. A., Duff, I.S.: A Combined Unifrontal/Multifrontal Method for Unsymmetric Sparse Matrices. University of Florida, Technical Report 16 (1997) 1–18MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Georg Hebermehl
    • 1
  • Friedrich-Karl Hübner
    • 1
  • Rainer Schlundt
    • 1
  • Thorsten Tischler
    • 2
  • Horst Zscheile
    • 2
  • Wolfgang Heinrich
    • 2
  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  2. 2.Ferdinand-Braun-Institut für HöchstfrequenztechnikBerlinGermany

Personalised recommendations