An Embedding Method for High Frequency Circuits

  • Barbara Lang
  • Angelika Bunse-Gerstner
  • Henning Lemanczyk
  • Hans Georg Brachtendorf
  • Rainer Laur
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 4)


Widely seperated time scales appear in many electronic circuits, making analysis with the usual numerical methods very difficult and costly. In this article we present a quasilinear system of partial differential equations (PDE) of first order, where the time scales are treated seperately. The PDE corresponds to the system of differential-algebraic equations (DAE) describing the electronic circuit in the sense that the solution of the PDE restricted to one of its characteristics is the solution of the DAE. This embedding method is described in a general setting. Hence it can be used for various applications in circuit simulation.

Since generalized quasiperiodic functions, which are presented here, conceptualize physical properties, they have a basic significance for the embedding method.

Theoretical investigations are presented as well as new approaches for numerical methods based on the connection between the PDE and the DAE.


Partial Differential Equation Steady State Analysis Node Voltage Circuit Equation Embedding Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.G. Brachtendorf. Simulation des eingeschwungenen Verhaltens elektronischer Schaltungen. Shaker, Aachen, 1994.Google Scholar
  2. 2.
    H.G. Brachtendorf. On the relation of certain classes of ordinary differential algebraic equations with partial differential algebraic equations. Technical Report 1131G0-791114-19TM, Bell-Laboratories, 1997.Google Scholar
  3. 3.
    H.G. Brachtendorf. Theorie und Analyse von autonomen und quasiperiodisch angeregten elektrischen Netzwerken. Habilitationsschrift, Universität Bremen, 2001.Google Scholar
  4. 4.
    H. G. Brachtendorf and R. Laur. Transient simulation of oscillators. Technical Report 1131GO-980410-09TM, Bell-Laboratories, 1998.Google Scholar
  5. 5.
    H. G. Brachtendorf, G. Welsch, and R. Laur. A novel time-frequency method for the simulation of the steady state circuits driven by multitone signals. ProcIEEESCS, June 1997.Google Scholar
  6. 6.
    H. G. Brachtendorf, G. Welsch, R. Laur, and A. Bunse-Gerstner. Numerical steady state analysis of electronic circuits driven by multi-tone signals. Electronic Engineering, 79(2), pp 103–112, April 1996.CrossRefGoogle Scholar
  7. 7.
    W. Kampowski, P. Rentrop, and W. Schmidt. Classification and numerical simulation of electric circuit. Surveys on Mathematics for Industry, 2(1), pp 23–65, 1992.MathSciNetGoogle Scholar
  8. 8.
    O. Narayan and J. Roychowdhury. Multi-time simulation of voltage-controlled oscillators. Proc. Design Automation Conf., pp 629–634, 1999Google Scholar
  9. 9.
    E. Ngoya and R. Larcheváque. Envelope transient analysis: A new method for the transient and steady state analysis of microwave communications circuit and systems. In Proc. IEEE MTT-S Int. Microwave Symp., pp 1365–1368, Sanfrancisco, 1996.Google Scholar
  10. 10.
    R. Pulch. Numerische Simulation von PDE-Modellen in der Analyse von RF-Schaltungen, 1999.Google Scholar
  11. 11.
    R. Pulch. PDE techniques for finding quasi-periodic solutions of oscillators. Preprint 09, IWRMM, Universität Karlsruhe, 2001.Google Scholar
  12. 12.
    R. Pulch and M. Günther. A method of characteristics for solving multirate partial differential equations in radio frequency application. Preprint 07, IWRMM, Universität Karlsruhe, 2000.Google Scholar
  13. 13.
    J. Roychowdhury. Efficient methods for simulating highly nonlinear multi-rate circuits. In Proc. IEEE Design Automation Conf., pp 269–274, 1997.Google Scholar
  14. 14.
    J. Roychowdhury. Analyzing circuits with widely separated time scales using numerical pde methods. IEEE Transactions on Circuits and Systems I — Fundamental Theory and Applications, 48, pp 578–594, May 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J. Roychowdhury., Multi-time PDEs for dynamical system analysis. In U. van Rienen and M. Guenther and D. Hecht (eds.): Scientific Computing in Electrical Engineering. Lecture Notes in Computational Science and Engineering, Springer, Berlin, pp 3–14, 2001CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Barbara Lang
    • 1
  • Angelika Bunse-Gerstner
    • 1
  • Henning Lemanczyk
    • 1
  • Hans Georg Brachtendorf
    • 2
  • Rainer Laur
    • 3
  1. 1.Zentrum für TechnomathematikUniversität BremenGermany
  2. 2.Fraunhofer IISErlangenGermany
  3. 3.Institut für Theoretische Elektrotechnik und MikroelektronikUniversität BremenGermany

Personalised recommendations