Advertisement

G. Lamé vs. J.C. Maxwell: How to Reconcile Them?

  • Antonio DiCarlo
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 4)

Abstract

Nowadays, after more than a century of inconsiderate divergence between electromagnetic and mechanical field theories, we find it hard to bring them together. This can be best exemplified by the problematic status of the electrodynamics of deformable media. The blame can be laid mainly on the limitations of the underlying theoretical frameworks and on the practitioners’ education, too narrow to bridge the gap between them. I would like to concentrate here on the first problem—even though I am convinced that the second one carries more weight.

Keywords

Force Density Rational Physic Test Velocity Electromagnetic Field Theory Body Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lamé, G.: Leçons sur la théorie mathématique de l’élasticité des corps solides, deuxième édition, Gauthier-Villars, Paris, 1866Google Scholar
  2. 2.
    Benvenuto, E.: An introduction to the history of structural mechanics, Springer, New York, 1991CrossRefzbMATHGoogle Scholar
  3. 3.
    Dyson, F.J.: Why is Maxwell’s theory so hard to understand? Reprint distributed (with no further reference) at the Fourth International Congress on Industrial and Applied Mathematics (ICIAM 99), Edinburgh, 1999Google Scholar
  4. 4.
    Saletan, E.J.: Contraction of Lie groups. J. Mathematical Physics 2 (1961) 1–21MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Le Bellac, M., Levy-Leblond, J.-M.: Galilean electromagnetism. Il Nuovo Cimento 14 B (1973) 217–32Google Scholar
  6. 6.
    Tonti, E.: A mathematical model for physical theories. Rend. Accademia dei Lincei 52 (1972) 175–181 (1st part) & 350-356 (2nd part)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Tonti, E.: On the geometrical structure of electromagnetism. In: Gravitation, Electromagnetism and Geometrical Structures (G. Ferrarese, ed.), Pitagora, Bologna (1996) 281–3Google Scholar
  8. 8.
    Tonti, E.: Finite formulation of the electromagnetic field. In: PIER 32 — Geometric Methods for Computational Electromagnetics (F.L. Teixeira, ed.), EMW Publishing, Cambridge, MA (2001) 1–44Google Scholar
  9. 9.
    Mattiussi, C.: Edge elements and cochain-based field function approximation. In: Proceedings of the 4th International Workshop on Electric and Magnetic Fields (Marseille, May 12-15, 1998), A.I.M., Liège (1998) 301–306Google Scholar
  10. 10.
    Mattiussi, C.: The finite volume, finite element, and finite difference methods as numerical methods for physical field problems. Advances in Imaging and Electron Physics 113 (2000) 1–146CrossRefGoogle Scholar
  11. 11.
    Naber, G.L.: The geometry of Minkowsky spacetime: an introduction to the mathematics of the special theory of relativity, Springer, New York, 1992CrossRefGoogle Scholar
  12. 12.
    Crampin M., Pirani F.A.E.: Applicable differential geometry, Cambridge University Press, Cambridge, 1986zbMATHGoogle Scholar
  13. 13.
    Maxwell, J.C.: Remarks on the mathematical classification of physical quantities. Proceedings of the London Mathematical Society 3 (1871) 224–232zbMATHGoogle Scholar
  14. 14.
    Henrotte, F., Legros, W.: Elasticity and electromagnetic force calculation with differential forms. In: Proc. 4th International Workshop on Electric and Magnetic Fields (Marseille, May 12-15, 1998), A.I.M., Liège (1998) 295–300Google Scholar
  15. 15.
    Henrotte, F., Hameyer, K.: A mathematical framework for the finite element modelling of electromechanical problems. In: Scientific Computing in Electrical Engineering (U. vanRienen et al., eds.), Springer, Heidelberg (2001) 359–366CrossRefGoogle Scholar
  16. 16.
    Henrotte, F., Hameyer, K.: Electromagnetic force densities in a continuous medium. In these ProceedingsGoogle Scholar
  17. 17.
    Abraham, R., Marsden J.E., Ratiu, T.: Manifolds, tensor analysis, and applications, Addison-Wesley Publishing Company, Reading, MA, 1983Google Scholar
  18. 18.
    Nardinocchi, P., Teresi, L., Tiero, A.: A direct theory of affine rods. European Journal of Mechanics A/Solids 21 (2002) 653–667MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    DiCarlo, A.: A non-standard format for continuum mechanics. In: Contemporary Research in the Mechanics and Mathematics of Materials (R.C. Batra, M.F. Beatty, eds.), CIMNE, Barcelona (1996) 263–268Google Scholar
  20. 20.
    Germain, P.: Sur l’application de la méthode des puissances virtuelles en mécanique des milieux continus. Comptes Rendus de l’Académie des Sciences de Paris 274 Série A (1972) 1051–1055MathSciNetzbMATHGoogle Scholar
  21. 21.
    Germain, P.: The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM Journal on Applied Mathematics 25 (1973) 556–575MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Maugin, G.A.: The method of virtual power in continuum mechanics: application to coupled fields. Acta Mechanica 35 (1980) 1–70MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Schwarz, P.: Continuous simulation of coupled systems. In these ProceedingsGoogle Scholar
  24. 24.
    Rothemund, K., van Rienen, U.: Coupled simulation of electromagnetic fields and mechanical deformation. In these ProceedingsGoogle Scholar
  25. 25.
    Bobbio, S.: Electrodynamics of materials: forces, stresses, and energies in solids and fluids, Academic Press, San Diego, 2000Google Scholar
  26. 26.
    Ericksen, J.L.: Electromagnetic effects in thermoelastic materials. Mathematics and Mechanics of Solids 7 (2002) 165–189MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Truesdell, C., Toupin, R.A.: The classical field theories. In: Handbuch der Physik, Vol. 3/1 (S. Flügge, ed.), Springer, Berlin (1960) 226–793Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Antonio DiCarlo
    • 1
  1. 1.Mathematical Structures of Materials Physics at DiSUniversità degli Studi “Roma Tre”RomaItaly

Personalised recommendations