A Modified Frozen Newton Method to Identify a Cavity by Means of Boundary Measurements

  • Tuong Ha-Duong
  • Mohamed Jaoua
  • Faiza Menif
Conference paper


We propose here a numerical procedure for reconstructing the shape of a cavity in a bounded domain by ultrasounds, from the boundary measurements. The ill posed nonlinear equation for the operator that maps the boundary of the cavity to the trace of the solution in the external surface is solved by a modified frozen Newton method.


Inverse Problem Incident Plane Wave Boundary Measurement Newton Algorithm Inverse Scattering Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colton D., Kress R. (1992): Inverse acoustic and electromagnetic scattering theory, Series on Applied Mathematical Sciences 93, Springer-Verlag, Berlin.MATHGoogle Scholar
  2. 2.
    Hettlich F. (1995): ‘Frechet derivatives in inverse obstacle scattering’, Inverse Problems 11, 371–382.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Hettlich F. (1998): ‘Frechet derivatives in inverse obstacle scattering’. Erratum, Inverse Problems 14, 209–210.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kirsch A. (1993): ‘The domain derivative and two applications in inverse scattering theory’, Inverse Problems 9, 81–96.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kirsch A., Kress R. (1993): ‘Uniqueness in inverse obstacle scattering’, Inverse Problems 9, 285–299.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Kress R. (1989): Linear Integral Equation, Springer-Verlag, Berlin Heidelberg New York.CrossRefGoogle Scholar
  7. 7.
    Kress R., Rundell W. (1994): ‘A quasi-Newton method in inverse obstacle scattering’, Inverse Problems 10, 1145 1157.MathSciNetGoogle Scholar
  8. 8.
    Menif F. (2003): Thesis, to be defended at ENIT, Tunis.Google Scholar
  9. 9.
    Monch L. (1996): ‘A Newton method for solving the inverse scattering problem for a sound-hard obstacle’, Inverse Problems 12, 309–323.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Oukaci F. (1999): Quelques problèmes numériques d’identification de forme en diffraction acoustique, Thèse de doctorat, Université de Technologie de Compiègne.Google Scholar
  11. 11.
    Potthast R. (1994): ‘Frechet differentiability of boundary integral operators in inverse acoustic scattering’, Inverse Problems 10, 431–447.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tuong Ha-Duong
    • 1
  • Mohamed Jaoua
    • 2
  • Faiza Menif
    • 2
  1. 1.Génie InformatiqueUniversité de Technologie de CompiègneCompiègne CedexFrance
  2. 2.Ecole Nationale d’Ingénieurs de TunisLAMSINTunis-BélvédèreTunisie

Personalised recommendations