Successful Purging of Stem Cell Products Using CD34 Selection

  • St. A. Grupp
  • S. Ash
  • J. Donovan
  • J. Temel
  • A. Zuckerman
  • J. Fang
  • G. Pierson
  • A. Ross
  • L. Diller
  • J. Gribben
Conference paper

Abstract

Purging of tumor cells from stem cell products used to support autologous transplant procedures to treat solid tumors may decrease the risk of relapse. Concerns have been raised about the use of the only widely available technique for stem cell purging, CD34 selection, for purging products collected from patients with neuroblastoma (NB), largely because of reports of detection of low levels of CD34 on the surface of some NB cell lines and tumors. We have used 3 approaches to address the issue of purging of NB from stem cell specimens and possible CD34 labeling of NB.
  1. 1.

    Flow cytometric detection of CD34 on NB cell lines. We assessed CD34 expression using a panel of anti-CD34 monoclonal antibodies including 9C5, 12.8 and QBend10 and showed no increase in labeling over secondary-only control.

     
  2. 2.

    Spiking experiments with the Isolex 50 system. NB cell lines were used to contaminate aliquots of stem cell collections, after which the products were purified using the Isolex 50. Purging of NB was assessed by quantitative multiplex RT-PCR (Taqman system) using a tumor-specific transcript, GAGE. We demonstrated <2 logs of tumor cell depletion from these specimens.

     
  3. 3.

    Analysis of clinical specimens. Stem cell pre- and post-CD34 selection were analyzed from patients treated on a tandem transplant trial for NB. In nine specimens selected using the Ceprate LC CD34 selection system where tumor was detectable by immunocytochemistry pre-selection, we observed >2.4 to >4.6 logs of NB purging after selection. We then analyzed 23 aliquots of stem This research was supported in part by the University of Pennsylvania Cancer Center (SG), by the Benacerraf/Frei Clinical Investigator Award, Dana-Farber Cancer Institute (LD) and the Fiftieth Anniversary Program for Scholars in Medicine, Harvard Medical School (LD). The abbreviations used are: FITC, fluorescein isothiocyanate; GAPDH, Glyceraldehyde 3 phosphate dehydrogenase; ICC, immunocytochemistry; MoAbs, monoclonal antibodies; PE, phycoerythrin; RT-PCR, reverse transcriptase-polymerase chain reaction; PBMC, peripheral blood mononuclear cells.

     

cells infused into patients post-CD34 selection and compared to the product pre-selection. 20/23 specimens showed depletion of NB, although some level of GAGE message was observed in most post-CD34 selection specimens. These data show that purging of NB from stem cells using CD34 selection is feasible, yielding infused products that are negative at the level of ICC but often positive at the level of RT-PCR.

Keywords

Toxicity Lymphoma Platinum Tyrosine Leukemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB, Reynolds CP. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cisretinoic acid. N Engl J Med 1999;341:1165–1173.PubMedCrossRefGoogle Scholar
  2. 2.
    Brenner M, Rill D, Moen R, Krance R, Mirro J, Anderson W, Ihle J. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 1993;341:85–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Freedman AS, Neuberg D, Mauch P, Soiffer RJ, Anderson KC, Fisher DC, Schlossman R, Alyea EP, Takvorian T, Jallow H, Kuhlman C, Ritz J, Nadler LM, Gribben JG. Long-term follow-up of autologous bone marrow transplantation in patients with relapsed follicular lymphoma. Blood 1999;94:3325–3333.PubMedGoogle Scholar
  4. 4.
    Civin CI, Trischmann T, Kadan NS, Davis J, Noga S, Cohen K, Duffy B, Groenewegen I, Wiley J, Law P, Hardwick A, Oldham F, Gee A. Highly purified CD34-positive cells reconstitute hematopoiesis. J Clin Oncol 1996;14:2224–2233.PubMedGoogle Scholar
  5. 5.
    Shpall EJ, Jones RB, Bearman SI, Franklin WA, Archer PG, Curiel T, Bitter M, Claman HN, Stemmer SM, Purdy M, Myers SE, Hami L, Taffs S, Heimfeld S, Hallagan J, Berenson RJ. Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy: influence of CD34-positive peripheral-blood progenitors and growth factors on engraftment. J Clin Oncol 1994;12:28–36.PubMedGoogle Scholar
  6. 6.
    Hafer R, Voigt A, Gruhn B, Zintl F. Neuroblastoma cells can express the hematopoietic progenitor cell antigen CD34 as detected at surface protein and mRNA level. J Neuroimmunol 1999;96:201–206.PubMedCrossRefGoogle Scholar
  7. 7.
    Voigt A, Hafer R, Gruhn B, Zintl F. Expression of CD34 and other haematopoietic antigens on neuroblastoma cells: consequences for autologous bone marrow and peripheral blood stem cell transplantation. J Neuroimmunol 1997;78:117–126.PubMedCrossRefGoogle Scholar
  8. 8.
    Brodeur GM, Pritchard J, Berthold F, Carlsen NLT, Castel V, Castleberry RP, De Bernardi B, Evans AE, Favrot M, Hedborg F, Kaneko M, Kemshead J, Lampert F, Lee REJ, Look AT, Pearson ADJ, Philip T, Roald B, Sawada T, Seeger RC. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993;11:1466–1477.PubMedGoogle Scholar
  9. 9.
    Grupp SA, Stern JW, Bunin N, Nancarrow C, Ross AA, Mogul M, Adams R, Grier HE, Gorlin JB, Shamberger R, Marcus K, Neuberg D, Weinstein HJ, Diller L. Tandem high dose therapy in rapid sequence for children with high-risk neuroblastoma. J Clin Onc 2000;18:2567–2575.Google Scholar
  10. 10.
    Moss TJ, Reynolds CP, Sather HN, Romansky SG, Hammond GD, Seeger RC. Prognostic value of immunocytologic detection of bone marrow metastases in neuroblastoma. N Engl J Med 1991;324:219–226.PubMedCrossRefGoogle Scholar
  11. 11.
    Rogers DW, Treleaven JG, Kemshead JT, Pritchard J. Monoclonal antibodies for detecting bone marrow invasion by neuroblastoma. J Clin Pathol 1989;42:422–426.PubMedCrossRefGoogle Scholar
  12. 12.
    Donovan J, Temel J, Zuckerman A, Gribben J, Fang J, Pierson G, Ross A, Diller L, Grupp SA. CD34 selection as a stem cell purging strategy for neuroblastoma: pre-clinical and clinical studies. Med. Ped. Oncol. 2000;in press.Google Scholar
  13. 13.
    Lode HN, Handgretinger R, Schuermann U, Seitz G, Klingebiel T, Niethammer D, Beck J. Detection of neuroblastoma cells in CD34+ selected peripheral stem cells using a combination of tyrosine hydroxylase nested RT-PCR and anti-ganglioside GD2 immunocytochemistry. Eur J Cancer 1997;33:2024–2030.PubMedCrossRefGoogle Scholar
  14. 14.
    Burchill SA, Lewis IJ, Selby P. Improved methods using the reverse transcriptase polymerase chain reaction to detect tumour cells. Br J Cancer 1999;79:971–977.PubMedCrossRefGoogle Scholar
  15. 15.
    Cheung IY, Cheung N-KV. Molecular detection of GAGE expression in peripheral blood and bone marrow: utility as a tumor marker for neuroblastoma. Clin Cancer Res 1997;3:821–826.PubMedGoogle Scholar
  16. 16.
    Greenfield D, Franklin WA, Tyson RW, Giller R, Shpall EJ. CD34 expression on pediatric solid tumors. Proc ASPHO 1996.Google Scholar
  17. 17.
    Tchirkov A, Kanold J, Giollant M, Halle-Haus P, Berger M, Rapatel C, Lutz P, Bergeron C, Plantaz D, Vannier JP, Stephan JL, Favrot M, Bordigoni P, Malet P, Briancon G, Demeocq F. Molecular monitoring of tumor cell contamination in leukapheresis products from stage IV neuroblastoma patients before and after positive CD34 selection. Med Pediatr Oncol 1998;30:228–232.PubMedCrossRefGoogle Scholar
  18. 18.
    Handgretinger R, Greil J, Schurmann U, Lang P, Gonzalez-Ramella O, Schmidt I, Fuhrer R, Niethammer D, Klingebiel T. Positive selection and transplantation of peripheral CD34+ progenitor cells: feasibility and purging efficacy in pediatric patients with neuroblastoma. J Hematofher 1997;6:235–242.CrossRefGoogle Scholar
  19. 19.
    Kanold J, Yakouben K, Tchirkov A, Halle P, Carret AS, Berger M, Rapatel C, deLumley L, Vannier JP, Plantaz D, LeGall E, Lutz P, Mechinaud F, Rialland X, Combaret V, Bordigoni P, Demeocq F. Long-term follow-up after CD34+ cell transplantation in children with neuroblastoma. Blood 1998;92:445a (abstr 1842).Google Scholar
  20. 20.
    Kanold J, Yakouben K, Tchirkov A, Carret A-S, Vannier J-P, LeGall E, Bordigoni P, Demeocq F. Long-term results of CD34+ cell transplantation in children with neuroblastoma. Med Pediatr Oncol 2000;35:1–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • St. A. Grupp
    • 1
  • S. Ash
    • 2
  • J. Donovan
    • 2
  • J. Temel
    • 2
  • A. Zuckerman
    • 2
  • J. Fang
    • 1
  • G. Pierson
    • 1
  • A. Ross
    • 3
  • L. Diller
    • 4
  • J. Gribben
    • 2
  1. 1.Department of Pediatrics, Division of OncologyChildren’s Hospital of Philadelphia, University of Pennsylvania, School of MedicinePhiladelphia
  2. 2.Department of Adult OncologyDana-Farber Cancer InstituteBoston
  3. 3.Department of Pediatric OncologyDana-Farber Cancer Institute and Department of Medicine, Children’s HospitalBoston
  4. 4.Diagnostics DivisionNexell Therapeutics, Inc.Irvine

Personalised recommendations