Skip to main content

Part of the book series: Mathematics in Industry ((TECMI,volume 2))

Abstract

Crystallization of polymers is a fascinating branch of polymer physics which has a significant relevance in industrial applications. Its importance arises from the fact that mechanical properties of any crystal polymer are determined by its morphology and internal structure, which in turn is dictated by the crystallization kinetics. That is the reason why, mathematical modeling aiming to describe and control the kinetics of polymer crystallization has achieved great interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Gomila, A. Pérez-Madrid, and J. M. Rubí. Physica A 233, 208 (1996).

    Article  Google Scholar 

  2. I. Pagonabarraga, A. Pérez-Madrid, and J. M. Rubí. Physica A 237, 205 (1997).

    Article  Google Scholar 

  3. D. Reguera, J. M. Rubl, and A. Perez-Madrid, Physica A 259, 10 (1998).

    Article  Google Scholar 

  4. I. Pagonabarraga, and J. M. Rubí. Physica A 188, 553 (1992).

    Article  Google Scholar 

  5. K. F. Kelton. Solid State Phys. 45, 75 (1991).

    Article  Google Scholar 

  6. D. T. Wu. Solid State Phys. 50, 37 (1996).

    Article  Google Scholar 

  7. A. C. Zettlemoyer. Nucleation. (Marcel Dekker, New York, 1969).

    Google Scholar 

  8. A. Laaksonen, V. Talanquer and D. W. Oxtoby. Annu. Rev. Phys. Chem. 46, 489 (1995).

    Article  Google Scholar 

  9. P. G. Debenedetti. Metastable Liquids: concepts and principles. Chap. 3. (Princeton University Press, 1996).

    Google Scholar 

  10. D. Turnbull and J.C. Fisher, J. Chem. Phys. 17, 71 (1949).

    Article  Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Vol 5 (Statistical Physics Part 1) and Vol 9 (Statistic al Physics Part 2) (Pergamon Press, New York, 1980).

    Google Scholar 

  12. K. F. Kelton, A. L. Greer and C. V. Thompson. J. Chem. Phys. 79, 6261 (1983).

    Article  Google Scholar 

  13. Ya. B. Zeldovich, Acta Physicochim. URSS, 18, 1 (1943).

    Google Scholar 

  14. I. Prigogine and P. Mazur. Physica XIX, 241 (1953).

    Article  Google Scholar 

  15. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, (Dover, New York, 1984).

    Google Scholar 

  16. J. M. Rubi, and P. Mazur. Physica A 250, 253 (1998).

    Article  Google Scholar 

  17. J. S. van Duijneveldt and D. Frenkel. J. Chem. Phys. 96, 4655 (1992).

    Article  Google Scholar 

  18. P. R. ten Wolde, M. J. Ruiz-Montero and D. Frenkel. J. Chem. Phys. 104, 9932 (1996) and references quoted therein.

    Google Scholar 

  19. P. R. ten Wolde, M. J. Ruiz-Montero and D. Frenkel. Faraday Discuss. 104, 93 (1996).

    Article  Google Scholar 

  20. D. Reguera, J. M. Rubí, and A. Pérez-Madrid, J. Chem. Phys. 109, 5987 (1998).

    Article  Google Scholar 

  21. A. Ziabicki, J. Chem. Phys. 48, 4368 (1968).

    Article  Google Scholar 

  22. A. Ziabicki, J. Chem. Phys. 85, 3042 (1986).

    Article  Google Scholar 

  23. M.L. Di Lorenzo and C. Silvestre, Prog. Polym. Sci. 24 917 (1999).

    Article  Google Scholar 

  24. A. Pérez-Madrid, J. M. Rubí, and P. Mazur. Physica A 212, 231 (1994).

    Article  Google Scholar 

  25. D. Reguera and J.M. Rub, J. Chem. Phys. (in press).

    Google Scholar 

  26. K.J. Zhang et al. J. Chem. Phys 111, 2270 (1999).

    Article  Google Scholar 

  27. G. Shi and J.H. Seinfeld, J. Appl. Phys. 68, 4550 (1990).

    Article  Google Scholar 

  28. A. Onuki, J. Phys. Condo. Matt. 9 6119 (1997).

    Article  Google Scholar 

  29. I. Santarnaría-Holek, D. Reguera, and J. M. Rubi, Phys. Rev. E 63 051106 (2001).

    Article  Google Scholar 

  30. G. Eder and H. Janeschitz-Kriegl. Processing of Polymers, Chapter 5, (VCH, Germany, 1997).

    Google Scholar 

  31. G. Eder in Macromolecular Design of Polymeric Materials. K. Hatada, T. Kitayarna, O. Vogi (Eds.) (Marcel Dekker, New York, in press).

    Google Scholar 

  32. D.W. Gedde, Polymer Physics, (Chapman & Hall, London, 1995).

    Google Scholar 

  33. D. Andreucci, A. Fasano, M. Prirmicerio, and R. Ricci. Surv. Math. Ind. 6, 7 (1996).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reguera, D., Rubí, J.M., Bonilla, L.L. (2003). Kinetic Theory of Nucleation In Polymers. In: Capasso, V. (eds) Mathematical Modelling for Polymer Processing. Mathematics in Industry, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55771-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55771-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62810-8

  • Online ISBN: 978-3-642-55771-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics