Advertisement

Curtain Coating

  • Avner Friedman
  • David S. Ross
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 3)

Abstract

In this chapter we consider several issues related to curtain coating: (i) The stabilization of the curtain through the reduction of the surface tension of the liquid/air interface; (ii) The measurement of the dynamic surface tension of that interface; and (iii) The response of the curtain to pressure fluctuations.

Keywords

Surface Tension Tail Length Dynamic Surface Tension Bead Shape Homologous Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. W. Alt, L. A. Caffarelli, and A. Friedman, Jet flows with gravity, J. Reine Angew. Math., 331 (1982), 58–103.MathSciNetMATHGoogle Scholar
  2. 2.
    J. M. Baumlin, D. Ross, S. Weinstein, and T. Whitesides, unpublished work.Google Scholar
  3. 3.
    D. A. Edwards, H. Brenner, and D. T. Wasan, Interfacial Transport Processes and Rheology, Butterworth-Heinemann, Boston (1991).Google Scholar
  4. 4.
    D. S. Finnicum, S. J. Weinstein, and K. J. Ruschak, The effect of applied pressure on the shape of a two-dimensional liquid curtain falling under the influence of gravity, J. Fluid Mech., 255 (1993), 647–665.CrossRefGoogle Scholar
  5. 5.
    A. Friedman, Variational Principles and Free-Boundary Problems, Wiley-Interscience, John Wiley & Sons, New York (1982).Google Scholar
  6. 6.
    A. Friedman, Mathematics in Industrial Problems, Part 9, IMA Volumes in Mathematics and its Applications, #88, Springer-Verlag, New York (1997).MATHCrossRefGoogle Scholar
  7. 7.
    I. Langmuir, The Constitution and Fundamental Properties of Solids and Liquids, J. Amer. Chem. Soc, 38 (1916), 2221–2295.CrossRefGoogle Scholar
  8. 8.
    S. R. Lin and G. Roberts, Waves in a viscous liquid curtain, J. Fluid Mech., 112 (1981), 443–458.CrossRefGoogle Scholar
  9. 9.
    A. Pitt, D. S. Ross, and T. Whitesides, A mathematical model of dynamic surface tension, unpublished work.Google Scholar
  10. 10.
    S. J. Weinstein, A. Clarke, A. G. Moon, and E. A. Simister, Time-dependent equations governing the shape of a two-dimensional liquid curtain, Part 1: Theory, Fluid Physics, 9 (1997), 3626–3636.Google Scholar
  11. 11.
    S. J. Weinstein, J. H. Hoff, D. S. Ross, Time-dependent equations governing the shape of a three-dimensional liquid curtain, Physics of Fluid, 10 (1998), 1815–1818.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Avner Friedman
    • 1
  • David S. Ross
    • 2
  1. 1.Department of MathematicsOhio State UniversityColumbusUSA
  2. 2.Department of Mathematics and StatisticsRochester Institute of TechnologyRochesterUSA

Personalised recommendations