Optimal Design of High Power Electronic Devices by Topology Optimization

  • Ronald H. W. Hoppe
  • Peter Böhm
  • George Mazurkevitch
  • Svetozara Petrova
  • Gerhard Wachutka
  • Eckhard Wolfgang

Abstract

High power electronic devices such as converter modules are frequently used as electric drives for high power electromotors. The efficient and reliable operating behaviour of such devices requires an optimal design with regard to a minimization of power losses due to parasitic inductivities caused by eddy currents. The mathematical modelling gives rise to a topology optimization problem where the state variables are required to satisfy the quasistationary limit of Maxwell’s equations and the design variables are subject to both equality and inequality constraints. Based on appropriate finite element approximations involving domain decomposition techniques, the discretized optimization problem is solved by a primaldual Newton interior-point method.

Keywords

Transportation Eter Electromagnetism Lani 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ammari, A. Buffa, J.-C. Nédélec, “A justification of eddy currents model for the Maxwell equations”, to appear in SIAM J. Appl. Math.Google Scholar
  2. 2.
    R. Beck, P. Deuflhard, R. Hiptmair, R.H.W. Hoppe, and B. Wohlmuth, “Adaptive multilevel methods for edge element discretizations of Maxwell’s equations”, Surveys of Math. in Industry, Vol. 8, pp. 271–312, (1999).MathSciNetMATHGoogle Scholar
  3. 3.
    R. Beck, R. Hiptmair, R.H.W. Hoppe, and B. Wohlmuth, “Residual based a posteriori error estimators for eddy current computation”, to appear in M2AN Math. Modelling and Numer. Anal., (2000).Google Scholar
  4. 4.
    F. Ben Belgacem, A. Buffa, and Y. Maday, “The mortar finite element method for 3D Maxwell equations: First results”, Report 99023, Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris, (1999).Google Scholar
  5. 5.
    M.P. Bendsøe, “Optimization of Sructural Topology, Shape, and Material”, Springer, Berlin-Heidelberg-New York, 1995.Google Scholar
  6. 6.
    O. Biro and K. Preis, “Various FEM formulations for the calculation of transient 3D eddy currents in nonlinear media”, IEEE Trans. Magn. 31, 1307–1312, (1995).CrossRefGoogle Scholar
  7. 7.
    O. Biro, K. Preis, P. Böhm, and G. Wachutka, “Edge finite element analysis of transient skin effect problems”, In: Proc. Conf. on the Comput. of Electromagnetic Fields (COMPUMAG), Sapporo, Japan, October 25-28, 1999, pp. 694–695, Sapporo, 1999Google Scholar
  8. 8.
    O. Biro, K. Preis, P. Böhm, and G. Wachutka, “Edge finite element analysis of transient skin effects”, to appear in IEEE Transactions on Magnetics, 2000Google Scholar
  9. 9.
    P. Böhm, E. Falck, J. Sigg, and G. Wachutka, “Numerical analysis of distributed inductive parasitics in high power bus bars”, In: High Performance Scientific and Engineering Computing. Proc. “Int. FORTWIHR-Symposium”, Munich, March 1998 (Bungartz, H., Durst, F.,and Zenger, Chr.; eds.), pp. 397–404, Lecture Notes in Computational Science and Engineering, Vol. 8, Springer, Berlin-Heidelberg-New York, 1999Google Scholar
  10. 10.
    A. Bossavit, “Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements”, Electromagnetism Series Vol. 2, Academic Press, San Diego, 1998.Google Scholar
  11. 11.
    St. Dürndorfer, V. Gradinaru, R.H.W. Hoppe, E.-R. König, G. Schräg, and G. Wachutka, “Numerical simulation of microstructured semiconductor devices, transducers, and systems”, In: High Performance Scientific and Engineering Computing. Proc. “Int. FORTWIHR-Symposium”, Munich, March 1998 (Bungartz, H., Durst, F.,and Zenger, Chr.; eds.), pp. 309–323, Lecture Notes in Computational Science and Engineering, Vol. 8, Springer, Berlin-Heidelberg-New York, (1999).CrossRefGoogle Scholar
  12. 12.
    R. Hiptmair, “Multigrid method for Maxwell’s equations”, SIAM J. Numer. Anal. 36, 204–225, (1999).MathSciNetCrossRefGoogle Scholar
  13. 13.
    R.H.W. Hoppe, “Mortar edge elements in R 3”, East-West J. Numer. Anal., Vol. 7, 159–173, (1999).MathSciNetMATHGoogle Scholar
  14. 14.
    R.H.W. Hoppe, “Adaptive mortar edge elements in the computation of eddy currents”, to appear in Proc. Conf. “Analysis and Approximation of Boundary Value Problems”, Jyväskylä (Finland), October 1998 (Neittaanmäki, P. et al.; eds.), (2000).Google Scholar
  15. 15.
    R.H.W. Hoppe, Y. Iliash, and G. Mazurkevitch, “Domain decomposition methods in the design of high power electronic devices”, to appear in Proc. Conf. on Multifield Problems, Stuttgart, October 1999 (M. Sändig and W. Wendland, eds.), Springer, Berlin-Heidelberg-New York, (2000).Google Scholar
  16. 16.
    R.H.W. Hoppe, S. Petrova, and V. Schulz, “A primal-dual Newton-type interior-point method for topology optimization”, Preprint, Institute of Mathematics, University of Augsburg, (2000).Google Scholar
  17. 17.
    R.H.W. Hoppe, S. Petrova, and V. Schulz, “Topology optimization of conductive media described by Maxwell’s equations”, to appear in Proc. 2nd Conf. Numer. Anal. Appl., Rousse, Bulgaria, Lect. Notes in Comp. Sci., Springer, (2001).Google Scholar
  18. 18.
    J.-C. Nédélec, “Mixed finite elements in R 3”, Numer. Math. 35, 315–341, (1980).MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    J.-C. Nédélec, “A new family of mixed finite elements in R 3”, Numer. Math. 50, 57–81, (1986).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ronald H. W. Hoppe
    • 1
  • Peter Böhm
    • 2
  • George Mazurkevitch
    • 1
  • Svetozara Petrova
    • 1
    • 4
  • Gerhard Wachutka
    • 2
  • Eckhard Wolfgang
    • 3
  1. 1.Institute of MathematicsUniversity of AugsburgAugsburgGermany
  2. 2.Physics of Electrotechn, Munich University of TechnologyMunichGermany
  3. 3.Siemens AGMunichGermany
  4. 4.on leave from the Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations