Skip to main content

A Viscoelastic Turbulence Model Based on Renormalization Group Theory

  • Chapter
Mathematics — Key Technology for the Future
  • 902 Accesses

Abstract

The aim of this project, which is in cooperation with DaimlerChrysler AG, Rhodia Acetow AG, the Steinbeis transfer center HTCO and Prof. H.Kielhoefer at the University of Augsburg, is to improve the numerical simulation of turbulent separated flows. Flows of that type arise in a variety of technically important situations. An example from automotive industry is the flow behind a car. By means of the renormalization group theory (RNG), we have constructed a Reynolds stress model with model coefficients calculated from theory. A first version of our turbulence model has been tested with the aid of the finite element code FIDAP with encouraging results for the flow over a backward facing step. Within this project, we have also addressed some more theoretical aspects, ranging from questions regarding the “epsilon expansion” up to the question of existence and regularity of solutions of the stochastically forced Navier Stokes equation. The latter work, which will be essential for a mathematically rigorous foundation of our model, has been done by Dipl.-Math. Ch. Gugg at the University of Augsburg. The ultimate test case for our model shall be the flow behind a car with data from wind tunnel experiments provided by the DaimlerChrysler AG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dannevik, W. P., Yakhot, V., Orszag, S. A., Analytical Theories of Turbulence and the e-Expansion, Phys. Fluids 30(7), 2021 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  2. DeDominicis, C., Martin, P. C., Energy Spectra of Certain Randomly Stirred Fluids, Phys. Rev. A 19(1), 419 (1979).

    Article  Google Scholar 

  3. Derrida, B., Critical Properties of One-Dimensional Mappings, in “Bifurcation Phenomena in Math. Phys. and Rel. Topics” (eds. C. Bardos, D. Bessis), D. Reidel Publ. Comp., Dordrecht, 1980.

    Google Scholar 

  4. Eaton, J. K., Johnston, J. P., Turbulent Flow Reattachment: An Experimental Study of the Flow and Structure Behind a Backward-Facing Step, Technical Report MD-39, Dept. of Mech. Eng., Stanford Univ., CA. (1980).

    Google Scholar 

  5. Engelman, M., FIDAP 8 Manual (Vols 1-8), Fluent Inc., Lebanon, NH, 1998.

    Google Scholar 

  6. Fisher, M. E., Critical Phenomena in Statistical Mechanics — Aspects of Renormalization Group Theory, in “Bifurcation Phenomena in Math. Phys. and Rel. Topics” (eds. C. Bardos, D. Bessis), D. Reidel Publ. Comp., Dordrecht, 1980.

    Google Scholar 

  7. Forster, D.,Nelson, D. R., Stephen, M.J., Large Distance and Long Time Properties of a Randomly Stirred Fluid, Phys. Rev. A 16(2), 732 (1977).

    Article  MathSciNet  Google Scholar 

  8. Fournier, J.-D., Frisch, U., Remarks on the Renormalization Group in Statistical Fluid Dynamics, Phys. Rev. A 28(2), 1000 (1983).

    Article  MathSciNet  Google Scholar 

  9. Haase, W., Cahput, E., Elsholz, E., Leschziner, M. A., Mueller, U. R. (eds), ECARP-European Computational Aerodynamics Research Project: Validation of CFD Codes and Assessment of Turbulence Models, Notes on Num. Fluid Mech. 58, Comm. Research in Aeronautics, Vieweg, Braunschweig, 1997.

    Google Scholar 

  10. Ivanchenko, Y. M., Lisyansky, A.A., Physics of Critical Fluctuations, Springer, New York, 1995.

    Book  Google Scholar 

  11. Joseph, D. D., Fluid Dynamics of Viscoelastic Liquids, Appl. Math. Sci. 84, Springer, New York, 1990.

    Google Scholar 

  12. Ma, S., Mazenko, G. F., Critical Dynamics of Ferromagnets in 6-ε Dimensions: General Discussion and Detailed Calculation, Phys. Rev. B 11(11), 4077 (1975).

    Article  Google Scholar 

  13. Coleman, B. D., Markovitz, H., Noll, W., Viscometric Flows of Non-Newtonian Fluids; Theory and Experiment, Springer Tracts Nat. Phil. 5, 1966.

    Google Scholar 

  14. Orszag, S.A., et al., Introduction to Renormalization Group Modelling of Turbulence, in: “Simulation and Modelling of Turbulent Flows”, ICASE/LaRC Series in Comp. Sci. and Eng., (ed. by T. B. Gatski, M. Y. Hussaini, J. L. Lumley), Oxford Univ. Press, New York, 1996.

    Google Scholar 

  15. Derrida, B., Gervois, A., Pomeau, Y., Universal Metric Properties of Bifurcations of Endomorphisms, J. Phys. A: Math. Gen., 12(3), 269 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  16. Rivlin, R.S., The Relation Between the Flow of Non-Newtonian Fluids and Turbulent Newtonian Fluids, Q. Appl. Maths XV(2), 212 (1957).

    MathSciNet  Google Scholar 

  17. Rubinstein, R., Barton, J. M., Non-Linear Reynolds Stress Models and the Renormalization Group, Phys. Fluids A 2(8), 1472 (1990).

    Article  MATH  Google Scholar 

  18. Speziale, C.G., On Nonlinear K-l and K-ε Models of Turbulence, J. Fluid Mech. 178, 459 (1987).

    Article  MATH  Google Scholar 

  19. Zhou, Y., Vahala, G., Thangam, S., Development of a Turbulence Model Based on Recursion Renormalization Group Theory, Phys. Rev. E 49(6), 5195 (1994).

    Article  Google Scholar 

  20. Wilson, K. G., Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture, Phys. Rev. B 4(9), 3174 (1971).

    Article  MATH  Google Scholar 

  21. Yakhot, V., Orszag, S. A., Thangam, S., Speziale, C. G., Gatski, T.B., Development of Turbulence Models for Shear Flows by a Double Expansion Technique, Phys. Fluids A 4(7), 1510, (1992).

    Article  MathSciNet  MATH  Google Scholar 

  22. Yakhot, V., Orszag, S. A., Renormalization Group Analysis of Turbulence, J. Sci. Comput. 1(1), 3 (1986).

    Google Scholar 

  23. Yoshizawa, A., Statistical Analysis of the Deviation of the Reynolds Stress from its Eddy-Viscosity Representation, Phys. Fluids 27(6), 1377 (1984).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niggemann, M., Holzmann, M., Schmidt, D., Söldner, K. (2003). A Viscoelastic Turbulence Model Based on Renormalization Group Theory. In: Jäger, W., Krebs, HJ. (eds) Mathematics — Key Technology for the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55753-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55753-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62914-3

  • Online ISBN: 978-3-642-55753-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics