Skip to main content

The MYST Family of Histone Acetyltransferases

  • Chapter
Protein Complexes that Modify Chromatin

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 274))

Abstract

Multiple chromatin modifying proteins and multisubunit complexes have been characterized in recent Years. Histone acetyltransferase (HAT) activities have been the most thoroughly studied, both biochemically and functionally. This review sums up the current knowledge on a specific group of proteins that is extremely well conserved throughout evolution, the MYST family of histone acetyltransferases. These proteins play critical roles in various nuclear functions and the control of cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasland R, Gibson TJ, Stewart AF (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20:56–59

    PubMed  CAS  Google Scholar 

  • Adams CR, Kamakaka RT (1999) Chromatin assembly: biochemical identities and genetic redundancy. Curr Opin Genet Dev 9:185–190

    PubMed  CAS  Google Scholar 

  • Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF,an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5:367–375

    PubMed  CAS  Google Scholar 

  • Akhtar A, Becker PB (2001) The histone H4 acetyltransferase MOFuses a C2HCzinc finger for substrate recognition. EMBORep 2:113–118

    CAS  Google Scholar 

  • Akhtar A, Zink D, Becker PB (2000) Chromodomains are protein-RNA interaction modules. Nature 407:405–409

    PubMed  CAS  Google Scholar 

  • Allard S, Utley RT, Savard J, Clarke A, Grant P, Brandl CJ, Pillus L, Workman IL, Côté J (1999) NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esalp and the ATM-related cofactor Tralp. EMBOI 18: 5108–5119

    CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HPI chromo domain. Nature 410:120–124

    PubMed  CAS  Google Scholar 

  • Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD, Berger SL (2001) Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8:1243–1254

    PubMed  CAS  Google Scholar 

  • Bertram MI, Berube NG, Hang-Swanson X, Ran Q, Leung IK, Bryce S, Spurgers K, Bick RI, Baldini A, Ning Y, Clark LJ, Parkinson EK, Barrett JC, Smith JR, Pereira-Smith OM (1999) Identification of a gene that reverses the immortal phenotype of a subset of cells and is a member of a novel family of transcription factor-like genes. Mol Cell Biol 19:1479–1485

    PubMed  CAS  Google Scholar 

  • Borrow J, Stanton VP, Andresen JM, Becher R, Behm FG, Chaganti RSK, Civin CI, Disteche C, Dubé I, Frschauf AM, Horsman D, Mitelman F, Volina S, Watmore AE, Housman DE (1996) The translocation t(8;16) (pl1;pI3) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nature Genet 14:33–41

    PubMed  CAS  Google Scholar 

  • Bouchard C, Dittrich O, Kiermaier A, Dohmann K, Menkel A, Eilers M, Luscher B (2001) Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev 15:2042–2047

    PubMed  CAS  Google Scholar 

  • Boudreault AA, Cronier D, Selleck W, Lacoste N, Utley RT, Allard S, Savard J, Gagne-Henley A, Lane WS, Tan S, Côté J (2002) Yeastenhancer of polycomb is a dual transcription regulator and defines Esal-dependent acetylation of chromatin. Submitted

    Google Scholar 

  • Brady ME, Ozanne DM, Gaughan L, Waite I, Cook S, Neal DE, Robson CN (1999) Tip60 is a nuclear hormone receptor coactivator. J Biol Chem 274:17599–17604

    PubMed  CAS  Google Scholar 

  • Brand M, Yamamoto K, Staub A, Tora L (1999) Identification ofTATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J Biol Chem 274:18285–18289

    PubMed  CAS  Google Scholar 

  • Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR (1993) Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7:592–604

    PubMed  CAS  Google Scholar 

  • Brown CE, Howe L, Sousa K, Alley SC, Carrozza MJ, Tan S, Workman JL (2001) Recruitment of HATcomplexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292:2333–2337

    PubMed  CAS  Google Scholar 

  • Brown CE, Lechner T, Howe L, Workman JL (2000) The many HATs of transcription coactivators. Trends Biochem Sci 25:15–19

    PubMed  CAS  Google Scholar 

  • Brownell JE, Allis CD (1995) An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc Natl Acad Sci USA 92:6364–6368

    PubMed  CAS  Google Scholar 

  • Burke TW, Cook JG, Asano M, Nevins JR (2001) Replication factors MCM2 and ORCI interact with the histone acetyltransferase HBOL J Biol Chem 276:15397–15408

    PubMed  CAS  Google Scholar 

  • Cao X, Sudhof TC (2001) A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293:115–120

    PubMed  CAS  Google Scholar 

  • Carapeti M, Aguiar RC, Goldman JM, Cross NC (1998) A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91:3127–3133

    PubMed  CAS  Google Scholar 

  • Carmen AA, Milne L, Grunstein M (2002) Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J Biol Chem 277: 4778–4781

    PubMed  CAS  Google Scholar 

  • Champagne N, Bertos NR, Pelletier N, Wang AH, Vezmar M, Yang Y, Heng HH, Yang XJ (1999) Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 274:28528–28536

    PubMed  CAS  Google Scholar 

  • Champagne N, Pelletier N, Yang XJ (2001) The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene 20:404–409

    PubMed  CAS  Google Scholar 

  • Cheng SW, Davies KP, Yung E, Beltran RJ, Yu J, Kalpana GV (1999) c-MYCinteracts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat Genet 22:102–105

    PubMed  CAS  Google Scholar 

  • Cheung KJ Jr, Li G (2001) The tumor suppressor ING1: structure and function. Exp Cell Res 268:1–6

    PubMed  CAS  Google Scholar 

  • Choy JS, Tobe BT, Huh JH, Kron SJ (2001) Yng2p-dependent NuA4 histone H4 acetylation activity is required for mitotic and meiotic progression. J Biol Chem 276: 43653–43662

    PubMed  CAS  Google Scholar 

  • Clapier CR, Nightingale KP, Becker PB (2002) Acritical epitope for substrate recognition by the nucleosome remodeling ATPaseISWI. Nucleic Acids Res 30:649–655

    PubMed  CAS  Google Scholar 

  • Clarke AS, Lowell JE, Jacobson SJ, Pillus L (1999) Esal p is an essential histone acetyltransferase required for cell cycle progression. Mol Cell Biol 19:2515–2526

    PubMed  CAS  Google Scholar 

  • Corona DF, Clapier CR, Becker PB, Tamkun JW (2002) Modulation of ISWI function by site-specific histone acetylation. EMBORep 3:242–247

    CAS  Google Scholar 

  • Cosma MP, Tanaka T, Nasmyth K (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle-and developmentally regulated promoter. Cell 97:299–311

    PubMed  CAS  Google Scholar 

  • Creaven M, Hans F, Mutskov V, Col E, Caron C, Dimitrov S, Khochbin S (1999) Control of the histone-acetyltransferase activity of Tip60 by the HIV-l transactivator protein, Tat. Biochemistry 38:8826–8830

    PubMed  CAS  Google Scholar 

  • Dechend R, Hirano F, Lehmann K, Heissmeyer V, Ansieau S, Wulczyn FG, Scheidereit C, Leutz A (1999) The Bcl-3 oncoprotein acts as a bridging factor between NF-kappaB/Rel and nuclear co-regulators. Oncogene 18:3316–3323

    PubMed  CAS  Google Scholar 

  • Deleu L, Shellard S, Alevizopoulos K, Amati B, Land H (2001) Recruitment of TRRAP required for oncogenic transformation by ElA. Oncogene 20:8270–8275

    PubMed  CAS  Google Scholar 

  • Dhalluin C, Carlson IE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496

    PubMed  CAS  Google Scholar 

  • Donze D, Kamakaka RT (2001) RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. Embol 20:520–531

    CAS  Google Scholar 

  • Edmonson DG, Smith MM, Roth SY (1996) Repression domain of the yeast global repressor tupl directly interacts with histones H3 and H4. Genes Dev. 10:1247–1259

    Google Scholar 

  • Ehrenhofer-Murray AE, Rivier DH, Rine I (1997) The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and aRC function. Genetics 145:923–934

    PubMed  CAS  Google Scholar 

  • Eisen A, Utley RT, Nourani A, Allard S, Schmidt P, Lane WS, Lucchesi IC, Cote I (2001) The yeast NuA4 and Drosophila MSLcomplexes contain homologous subunits important for transcription regulation. J Biol Chem 276:3484–3491

    PubMed  CAS  Google Scholar 

  • Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B (2001) Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 15:2069–2082

    PubMed  CAS  Google Scholar 

  • Fuchs M, Gerber I, Drapkin R, Sif S, Ikura T, Ogryzko V, Lane WS, Nakatani Y, Livingston DM (2001) The p400 complex is an essential EIA transformation target. Cell 106:297–307

    PubMed  CAS  Google Scholar 

  • Galarneau L, Nourani A, Boudreault AA, Zhang Y, Heliot L, Allard S, Savard I, Lane WS, Stillman DI, Cote I (2000) Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol Cell 5: 927–937

    PubMed  CAS  Google Scholar 

  • Gaughan L, Brady ME, Cook S, Neal DE, Robson CN (2001) Tip60 is a co-activator specific for class I nuclear hormone receptors. J Biol Chem 276:46841–46848

    PubMed  CAS  Google Scholar 

  • Gavaravarapu S, Kamine J (2000) Tip60 inhibits activation of CREBprotein by protein kinase A. Biochem Biophys Res Commun 269:758–766

    PubMed  CAS  Google Scholar 

  • Gildea JJ, Lopez R, Shearn A (2000) A screen for new trithorax group genes identified little imaginal discs, the Drosophila melanogaster homologue of human retinoblastoma binding protein 2. Genetics 156:645–663

    PubMed  CAS  Google Scholar 

  • Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman IL (1997) Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11:1640–1650

    PubMed  CAS  Google Scholar 

  • Grant PA, Schieltz D, Pray-Grant MG, Steger DJ, Reese JC, Yates III Jr, Workman JL (1998a) A subset of TAFII s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94:45–53

    PubMed  CAS  Google Scholar 

  • Grant PA, Schieltz D, Pray-Grant MG, Yates iii Jr, Workman JL (1998b) The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol Cell 2:863–867

    PubMed  CAS  Google Scholar 

  • Grunstein M (1998) Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93:325–328

    PubMed  CAS  Google Scholar 

  • Gu W, Szauter P, Lucchesi JC (1998) Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Dev Genet 22:56–64

    PubMed  CAS  Google Scholar 

  • Gu W, Wei X, Pannuti A, Lucchesi JC (2000) Targeting the chromatin-remodeling MSL complex of Drosophila to its sites of action on the X chromosome requires both acetyl transferase and ATPase activities. EMBO J 19:5202–5211

    PubMed  CAS  Google Scholar 

  • Hassan AH, Neely KE, Workman JL (2001) Histone acetyltransferase complexes stabilize swi/snfbinding to promoter nucleosomes. Cell 104:817–827

    PubMed  CAS  Google Scholar 

  • Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken bglobin chromosomal domain. EMBOJ 13:1823–1830

    CAS  Google Scholar 

  • Herceg Z, Hulla W, Gell D, Cuenin C, Lleonart M, Jackson S, Wang ZQ (2001) Disruption of Trrap causes early embryonic lethality and defects in cell cycle progression. Nat Genet 29:206–211

    PubMed  CAS  Google Scholar 

  • Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC (1997) mol, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16: 2054–2060

    PubMed  CAS  Google Scholar 

  • Hlubek F, Lohberg C, Meller J, Jung A, Kirchner T, Brabletz T (2001) Tip60 is a cell-type-specific transcriptional regulator. J Biochem (Tokyo) 129:635–641

    CAS  Google Scholar 

  • Howe L, Auston D, Grant P, John S, Cook RG, Workman JL, Pillus L (2001) Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev 15:3144–3154

    PubMed  CAS  Google Scholar 

  • Howe L, Brown CE, Lechner T, Workman JL (1999) Histone acetyltransferase complexes and their link to transcription. Crit Rev Eukaryot Gene Expr 9:231–243

    PubMed  CAS  Google Scholar 

  • Howe L, Kusch T, Muster N, Chaterji R, Yates iii Jr, Workman JL (2002) Ynglp modulates the activity of Sas3p as a component of the yeast NuA3 histone acetyltransferase complex. Submitted

    Google Scholar 

  • Iizuka M, Stillman B (1999) Histone acetyltransferase HBOI interacts with the ORCI subunit of the human initiator protein. J Biol Chem 274:23027–23034

    PubMed  CAS  Google Scholar 

  • Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000) Involvement of the TIP60 histone acetylase complex in DNArepair and apoptosis. Cell 102:463–473

    PubMed  CAS  Google Scholar 

  • Jacobs SA, Khorasanizadeh S (2002) Structure of HPI Chromodomain Bound to a Lysine 9-Methylated Histone H3 Tail. Science 295:2080–2083

    PubMed  CAS  Google Scholar 

  • Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis CD, Khorasanizadeh S (2001) Specificity of the HPI chromo domain for the methylated N-terminus of histone H3. EMBO J 20:5232–5241

    PubMed  CAS  Google Scholar 

  • Jacobson RH, Ladurner AG, King DS, Tjian R (2000) Structure and function of a human TAFII250double bromodomain module. Science 288:1422–1425

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    PubMed  CAS  Google Scholar 

  • Jeppesen P, Turner BM (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenic marker for gene expression. Cell 74:281–289

    PubMed  CAS  Google Scholar 

  • Jiang YW, Stillman DJ (1996) Epigenetic effects on yeast transcription caused by mutations in an actin-related protein present in the nucleus. Genes Dev 10:604–619

    PubMed  CAS  Google Scholar 

  • Jin Y, Wang Y, Johansen J, Johansen KM (2000) JIL-l, a Chromosomal Kinase Implicated in Regulation of Chromatin Structure, Associates with the Male Specific Lethal (MSL)Dosage Compensation Complex. J Cell Biol 149:1005–1010

    PubMed  CAS  Google Scholar 

  • John S, Howe L, Tafrov ST, Grant PA, Sternglanz R, Workman JL (2000) The Something About Silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev 14:1196–1208

    PubMed  CAS  Google Scholar 

  • Kamine J, Elangovan B, Subramanian T, Coleman D, Chinnadurai G (1996) Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-l Tat transactivator. Virology 216:357–366

    PubMed  CAS  Google Scholar 

  • Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11:245–357

    Google Scholar 

  • Kelley RL, Meller VH, Gordadze PR, Roman G, Davis RL, Kuroda MI (1999) Epigenetic spreading of the Drosophila dosage compensation complex from roX RNAgenes into flanking chromatin. Cell 98:513–522

    PubMed  CAS  Google Scholar 

  • Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M (2001a) Activation of AMLl-mediated transcription by MOZand inhibition by the MOZ-CBPfusion protein. EMBOJ 20:7184–7196

    CAS  Google Scholar 

  • Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N, Abe T, Ohki M (2001b) Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(pll;qI3) chromosome translocation. Leukemia 15:89–94

    PubMed  CAS  Google Scholar 

  • Krebs JE, Kuo MH, Allis CD, Peterson CL (1999) Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev 13:1412–1421

    PubMed  CAS  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615–626

    PubMed  CAS  Google Scholar 

  • Kuo MH, Zhou J, Jambeck P, Churchill ME, Allis CD (1998) Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev 12:627–639

    PubMed  CAS  Google Scholar 

  • Lachner M, O’carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3lysine 9 creates a binding site for HPI proteins. Nature 410:116–120

    PubMed  CAS  Google Scholar 

  • Le S, Davis C, Konopka JB, Sternglanz R (1997) Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13:1029–1042

    PubMed  CAS  Google Scholar 

  • Lee HJ, Chun M, Kandror KV (2001) Tip60 and HDAC7interact with the endothelin receptor a and may be involved in downstream signaling. J Biol Chem 276:16597–16600

    PubMed  CAS  Google Scholar 

  • Legube G, Linares LK, Lemercier C, Scheffner M, Khochbin S, Trouche D (2002) Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. EMBO J. in press

    Google Scholar 

  • Leung JK, Berube N, Venable S, Ahmed S, Timchenko N, Pereira-Smith OM (2001) MRG15activates the B-myb promoter through formation of a nuclear complex with the retinoblastoma protein and the novel protein PAMI4. J Biol Chem 276:39171–39178

    PubMed  CAS  Google Scholar 

  • Linr, Leone JW, Cook RG, Allis CD (1989) Antibodies specific to acetylated histones document the existence of deposition-and transcription-related histone acetylation in Tetrahymena. J Cell Biol 108:1577–1588

    Google Scholar 

  • Liu Y, Vidanes G, linyc , mori s, siede w (2000) characterization of a Saccharomyces cerevisiaehomologue of schizosaccharomyces pombe chkl involved in dna-damage-induced m-phase arrest. mol gen genet 262:1132–1146

    PubMed  CAS  Google Scholar 

  • Loewith R, Meijer M, Lees-Miller SP, Riabowol K, Young D (2000) Three yeast proteins related to the human candidate tumor suppressor p33(ING1) are associated with histone acetyltransferase activities. Mol Cell Biol 20:3807–3816

    PubMed  CAS  Google Scholar 

  • Loewith R, Smith JS, Meijer M, Williams TJ, Bachman N, Boeke JD, Young D (2001) Ph023 is associated with the Rpd3 histone deacetylase and is required for its normal function in regulation of gene expression and silencing in Saccharomyces cerevisiae. J BiolChem 276:24068–24074

    CAS  Google Scholar 

  • Lucchesi JC (1998) Dosage compensation in flies and worms: the ups and downs of Xchromosome regulation. Curr Opin Genet Dev 8:179–184

    PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    PubMed  CAS  Google Scholar 

  • Lyman LM, Copps K, Rastelli L, Kelley RL, Kuroda MI (1997) Drosophila malespecific lethal-2 protein: structure/function analysis and dependence on MSL-l for chromosome association. Genetics 147:1743–1753

    PubMed  CAS  Google Scholar 

  • Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG (2001) Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damagebinding factors in vivo. Mol Cell Biol 21:6782–6795

    PubMed  CAS  Google Scholar 

  • McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD (1998) The novel ATM-related protein TRRAP is an essential cofactor for the c-myc and E2F oncoproteins. Cell 94:363–374

    PubMed  CAS  Google Scholar 

  • Megee PC, Morgan BA, Smith MM (1995) Histone H4 and the maintenance of genome integrity. Genes Dev 9:1716–1727

    PubMed  CAS  Google Scholar 

  • Meijsing SH, Ehrenhofer-Murray AE (2001) The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asfl in Saccharomyces cerevisiae. Genes Dev 15:3169–3182

    PubMed  CAS  Google Scholar 

  • Meller VH, Rattner BP (2002) The roXgenes encode redundant male-specific lethal transcripts required for targeting of the MSLcomplex. EMBO J 21:1084–1091

    PubMed  CAS  Google Scholar 

  • Neal KC, Pannuti A, Smith ER, Lucchesi JC (2000) A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOE Biochim. Biophys Acta 1490:170–174

    CAS  Google Scholar 

  • Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P, Losson R (2001) Heterochromatin formation in mammalian cells: interaction between histones and HPI proteins. Mol Cell 7:729–739

    PubMed  CAS  Google Scholar 

  • Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, Murzina NV, Laue ED (2002) Structure of the HPI chromodomain bound to histone H3 methylated at lysine 9. Nature 416:103–107

    PubMed  CAS  Google Scholar 

  • Nikiforov MA, Chandriani S, Park J, Kotenko I, Matheos D, Johnsson A, McMahon SB, Cole MD (2002) TRRAP-dependent and TRRAP-independent transcriptional activation by Myc family oncoproteins. Mol Cell Biol in press

    Google Scholar 

  • Nourani A, Doyon Y, Utley RT, Allard S, Lane WS, Cote J (2001) Role of an INGI growth regulator in transcriptional activation and targeted histone acetylation by the NuA4 complex. Mol Cell Biol 21:7629–7640

    PubMed  CAS  Google Scholar 

  • Ohba R, Steger DJ, Brownell JE, Mizzen CA, Cook RG, Cote J, Workman JL, Allis CD (1999) A novel H2A/H4 nucleosomal histone acetyltransferase in Tetrahymena thermophila. Mol Cell Biol 19:2061–2068

    PubMed  CAS  Google Scholar 

  • Osada S, Sutton A, Muster N, Brown CE, Yates Jr, 3RD, Sternglanz R, Workman JL (2001) The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASFI. Genes Dev 15:3155–3168

    PubMed  CAS  Google Scholar 

  • Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, Filetici P, Travers AA (2000) The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 19:6141–6149

    PubMed  CAS  Google Scholar 

  • Panagopoulos I, Fioretos T, Isaksson M, Samuelsson U, Billstrom R, Strombeck B, Mitelman F, Johansson B (2001) Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 10: 395–404

    PubMed  CAS  Google Scholar 

  • Park J, Kunjibettu S, McMahon SB, Cole MD (2001) The ATM-related domain of TRRAP is required for histone acetyltransferase recruitment and Myc-dependent oncogenesis. Genes Dev 15:1619–1624

    PubMed  CAS  Google Scholar 

  • Park J, Wood MA, Cole MD (2002) BAF53 forms distinct nuclear complexes and functions as a critical c-Myc-interacting nuclear cofactor for oncogenic transformation. Mol Cell Biol 22:1307–1316

    PubMed  CAS  Google Scholar 

  • Pelletier N, Champagne N, Stifani S, Yang X-J (2002) MOZ and MORF histone acetyltransferases interact with Runt-domain transcription factor Runx2. Oncogene 21:in press

    Google Scholar 

  • Prakash SK, Van Den Veyver IB, Franco B, Volta M, Ballabio A, Zoghbi HY (1999) Characterization of a novel chromo domain gene in xp22.3 with homology to Drosophila msl-3. Genomics 59:77–84

    PubMed  CAS  Google Scholar 

  • Ran Q, Pereira-Smith OM (2000) Identification of an alternatively spliced form of the tat interactive protein (Tip60), tip60(beta). Gene 258:141–146

    PubMed  CAS  Google Scholar 

  • Reid JL, Iyer VR, Brown PO, Struhl K (2000) Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esal histone acetylase. Mol Cell 6:1297–1307

    PubMed  CAS  Google Scholar 

  • Reifsnyder C, Lowell J, Clarke A, Pillus L (1996) Yeast SAS silencing genes and human genes associated with AMLand HIV-l Tat interactions are homologous with acetyltransferases. Nature Genet 14:42–48

    PubMed  CAS  Google Scholar 

  • Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    PubMed  CAS  Google Scholar 

  • Saleh A, Schieltz D, Ting N, Mc Mahon SB, Litchfield DW, Yates iii Jr, Leesmiller SP, Cole MD, Brandl CJ (1998) Tral p is a component of the yeast Ada-Spt transcriptional regulatory complexes. J Biol Chem 273:26559–26565

    PubMed  CAS  Google Scholar 

  • Sanjuan R, Marin I (2001) Tracing the origin of the compensasome: evolutionary history of DEAH helicase and MYST acetyltransferase gene families. Mol Biol Evol 18:330–343

    PubMed  CAS  Google Scholar 

  • Schultz DC, Friedman JR, Rauscher FI, 3rd (2001) Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-l form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15:428–443

    PubMed  CAS  Google Scholar 

  • Scott EK, Lee T, Luo L (2001) enok encodes a Drosophila putative histone acetyltransferase required for mushroom body neuroblast proliferation. Curr Biol 11: 99–104

    PubMed  CAS  Google Scholar 

  • Sharma M, Zarnegar M, Li X, Lim B, Sun Z (2000) Androgen receptor interacts with a novel MYST protein, HBO1. J Biol Chem 275:35200–35208

    PubMed  CAS  Google Scholar 

  • Shen X, Mizuguchi G, Hamiche A, Wu C (2000) A chromatin remodelling complex involved in transcription and DNAprocessing. Nature 406:541–544

    PubMed  CAS  Google Scholar 

  • Sheridan AM, Force T, Yoon HJ, O’leary E, Choukroun G, Taheri MR, Bonventre JV (2001) PLIP,a novel splice variant of Tip60, interacts with group IV cytosolic phospholipase A(2), induces apoptosis, and potentiates prostaglandin production. Mol Cell Biol 21:4470–4481

    PubMed  CAS  Google Scholar 

  • Shimono Y, Murakami H, Hasegawa Y, Takahashi M (2000) RET finger protein is a transcriptional repressor and interacts with enhancer of polycomb that has dual transcriptional functions. J Biol Chem 275:39411–39419

    PubMed  CAS  Google Scholar 

  • Sinclair DA, Clegg NJ, Antonchuk J, Milne TA, Stankunas K, Ruse C, Grigliatti TA, Kassis JA, Brock HW (1998) Enhancer of Polycomb is a suppressor of position-effect variegation in Drosophila melanogaster. Genetics 148:211–220

    PubMed  CAS  Google Scholar 

  • Sliva D, Zhu YX, Tsai S, Kamine J, Yang YC (1999) Tip60 interacts with human interleukin-9 receptor alpha-chain. Biochem Biophys Res Commun 263:149–155

    PubMed  CAS  Google Scholar 

  • Smith ER, Eisen A, Gu W, Sattah M, Pannuti A, Zhou J, Cook RG, Lucchesi JC, Allis CD (1998) ESAI is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci USA 95:3561–3565

    PubMed  CAS  Google Scholar 

  • Smith ER, Pannuti A, Gu W, Steurnagel A, Cook RG, Allis CD, Lucchesi JC (2000) The Drosophila MSLcomplex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20:312–318

    PubMed  CAS  Google Scholar 

  • Stankunas K, Berger J, Ruse C, Sinclair DA, Randazzo F, Brock HW (1998) The enhancer of polycomb gene of Drosophila encodes a chromatin protein conserved in yeast and mammals. Development 125:4055–4066

    PubMed  CAS  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    PubMed  CAS  Google Scholar 

  • Stuckenholz C, Kageyama Y, Kuroda MI (1999) Guilt by association: non-coding RNAs, chromosome-specific proteins and dosage compensation in Drosophila. Trends Genet 15:454–458

    PubMed  CAS  Google Scholar 

  • Takechi S, Nakayama T (1999) Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem Biophys Res Commun 266:405–410

    PubMed  CAS  Google Scholar 

  • Thomas T, Voss AK, Chowdhury K, Gruss P (2000) Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development. Development 127:2537–2548

    PubMed  CAS  Google Scholar 

  • Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384

    PubMed  CAS  Google Scholar 

  • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402:555–560

    PubMed  CAS  Google Scholar 

  • Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, John S, Workman JL (1998) Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394:498–502

    PubMed  CAS  Google Scholar 

  • Vassilev A, Yamauchi J, Kotani T, Prives C, Avantaggiati ML, Qin J, Nakatani Y (1998) The 400 kDa subunit of the PCAF acetylase complex belongs to the ATM superfamily. Mol Cell 2:869–875

    PubMed  CAS  Google Scholar 

  • Vavra KJ, Allis CD, Gorovsky MA (1982) Regulation of histone acetylation in Tetrahymena macro-and micronuclei. J Biol Chem 257:2591–2598

    PubMed  CAS  Google Scholar 

  • Vignali M, Hassan AH, Neely KE, Workman JL (2000a) ATP-Dependent chromatinremodeling complexes. Mol Cell Biol 20:1899–1910

    PubMed  CAS  Google Scholar 

  • Vignali M, Steger DJ, Neely KE, Workman JL (2000b) Distribution of acetylated histones resulting from Ga14-VP16 recruitment of SAGA and NuA4 complexes. EMBO J 19:2629–2640

    PubMed  CAS  Google Scholar 

  • Vogelauer M, Wu J, Suka N, Grunstein M (2000) Global histone acetylation and deacetylation in yeast. Nature 408:495–498

    PubMed  CAS  Google Scholar 

  • Wang Y, Zhang W, Jiny, Johansen J, Johansen KM (2001) The jil-l tandem kinase mediates histone h3 phosphorylation and is required for maintenance of chromatin structure in drosophila. cell 105:433–443

    PubMed  CAS  Google Scholar 

  • Weinberger M, Trabold PA, Lu M, Sharma K, Huberman JA, Burhans WC (1999) Induction by adozelesin and hydroxyurea of origin recognition complex-dependent DNA damage and DNA replication checkpoints in Saccharomyces cerevisiae. J Biol Chem 274:35975–35984

    PubMed  CAS  Google Scholar 

  • Winston F, Allis CD (1999) The bromodomain: a chromatin-targeting module? Nat Struct Biol 6:601–604

    PubMed  CAS  Google Scholar 

  • Wood MA, McMahon SB, Cole MD (2000) An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc, Mol Cell 5:321–330

    PubMed  CAS  Google Scholar 

  • Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579

    PubMed  CAS  Google Scholar 

  • Xu EY, Kim S, Replogle K, Rine J, Rivier DH (1999a) Identification of SAS4 and SASS, two genes that regulate silencing in Saccharomyces cerevisiae. Genetics 153:13–23

    PubMed  CAS  Google Scholar 

  • Xu EY, Kim S, Rivier DH (1999b) SAS4 and SAS5 are locus-specific regulators of silencing in Saccharomyces cerevisiae. Genetics 153:25–33

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Horikoshi M (1997) Novel substrate specificity of the histone acetyltransferase activity of HIV-l-Tat interactive protein Tip60. J Biol Chem 272: 30595–30598

    PubMed  CAS  Google Scholar 

  • Yan Y, Barlev NA, Haley RH, Berger SL, Marmorstein R (2000) Crystal structure of yeast esa 1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol Cell 6:1195–1205

    PubMed  CAS  Google Scholar 

  • Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A, Crabtree GR (1998) Rapid and phosphoinositol-dependent binding of the SWIISNF-like BAFcomplex to chromatin after T lymphocyte receptor signaling. Cell 95:625–636

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Utley, R.T., Côté, J. (2003). The MYST Family of Histone Acetyltransferases. In: Workman, J.L. (eds) Protein Complexes that Modify Chromatin. Current Topics in Microbiology and Immunology, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55747-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55747-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62909-9

  • Online ISBN: 978-3-642-55747-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics