Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 158))

Abstract

Antimicrobial peptides, mainly defensins and cathelicidins, are abundant components of granulocytes, Paneth cells of the small intestine, inflamed epithelia, and rabbit alveolar macrophages. There is increasing evidence that in these settings antimicrobial peptides and larger proteins contribute to microbicidal activity and other host defense functions. However, antimicrobial peptides and antimicrobial proteins (with the exception of lysozyme) are present at most in small amounts in most types of macrophages. In some cases, antimicrobial peptides may be difficult to detect at the protein level because macrophages lack granules, the large preformed storage compartment for antimicrobial peptides of granulocytes and Paneth cells, and may instead synthesize antimicrobial substances continually or on demand. Alternatively, histones, other nucleoproteins, or as yet unrecognized polypeptides or nonprotein components may contribute to oxygen-independent killing in macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96:3086–3093

    PubMed  CAS  Google Scholar 

  • Agerberth B, Lee JY, Bergman T, Carlquist M, Boman HG, Mutt V, Jornvall H (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202:849–854

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134:713–740

    Article  PubMed  CAS  Google Scholar 

  • Bensch KW, Raida M, Magert HJ, Schulz-Knappe P, Forssmann WG (1995) hBD-1: a novel beta-defensin from human plasma. FEBS Lett 368:331–335

    Article  PubMed  CAS  Google Scholar 

  • Bevins CL, Jones DE, Dutra A, Schaffzin J, Muenke M (1996) Human enteric defensin genes: chromosomal map position and a model for possible evolutionary relationships. Genomics 31:95–106

    Article  PubMed  CAS  Google Scholar 

  • Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR- 39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984

    PubMed  CAS  Google Scholar 

  • Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G, Zack JA, Waring AJ, Yang 00, Lehrer RI (2002) Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc Natl Acad Sci USA 99:1813–1818

    Article  PubMed  CAS  Google Scholar 

  • Cowland JB, Johnsen AH, Borregaard N (1995) hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 368:173–176

    Article  PubMed  CAS  Google Scholar 

  • Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60:1068–1074

    PubMed  CAS  Google Scholar 

  • Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL (1991) Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci USA 88:3952–3956

    Article  PubMed  CAS  Google Scholar 

  • Duits LA, Langermans JA, Paltansing S, van der ST, Vervenne RA, Frost PA, Hiemstra PS, Thomas AW, Nibbering PH (2000) Expression of beta-defensin-1 in chimpanzee (Pan troglodytes) airways. J Med Primatol 29:318–323

    Article  PubMed  CAS  Google Scholar 

  • Eisenhauer PB, Lehrer RI (1992) Mouse neutrophils lack defensins. Infect Immun 60:3446–3447

    PubMed  CAS  Google Scholar 

  • Gallo RL, Kim KJ, Bernfield M, Kozak CA, Zanetti M, Merluzzi L, Gennaro R (1997) Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 272:13088–13093

    Article  PubMed  CAS  Google Scholar 

  • Ganz T, Bellm L, Lehrer RI (2000) Protegrins: new antibiotics of mammalian origin. Expert Opin Investig Drugs 9:1731–1742

    Article  PubMed  Google Scholar 

  • Ganz T, Rayner JR, Valore EV, Tumolo A, Talmadge K, Fuller F (1989) The structure of the rabbit macrophage defensin genes and their organ-specific expression. J Immunol 143:1358–1365

    PubMed  CAS  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI (1985a) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435

    Article  PubMed  CAS  Google Scholar 

  • Ganz T, Sherman MP, Selsted ME, Lehrer RI (1985b) Newborn rabbit alveolar macrophages are deficient in two microbicidal cationic peptides, MCP-1 and MCP-2. Am Rev Respir Dis 132:901–904

    PubMed  CAS  Google Scholar 

  • Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57:3142–3146

    PubMed  CAS  Google Scholar 

  • Greenwald GI, Ganz T (1987) Defensins mediate the microbicidal activity of human neutrophil granule extract against Acinetobacter calcoaceticus. Infect Immun 55:1365–1368

    PubMed  CAS  Google Scholar 

  • Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B, Salcedo R (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238:325–332

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroeder J-M (1997) A peptide antibiotic from human skin. Nature 387:861–862

    Article  PubMed  CAS  Google Scholar 

  • Hart PD (1979) Phagosome-lysosome fusion in macrophages: a hinge in the intracellular fate of ingested microorganisms? Front Biol 48:409–423

    PubMed  CAS  Google Scholar 

  • Harwig SS, Swiderek KM, Kokryakov VN, Lee TD, Lehrer RI (1994) Primary structure of gallinacin-1, an antimicrobial beta-defensin from chicken leukocytes. In: Crabb JW (ed) Techniques in Protein Chemistry V. Academic Press, San Diego, pp. 81–88

    Google Scholar 

  • Hiemstra PS, Eisenhauer PB, Harwig SS, van den Barselaar MT, van Furth R, Lehrer RI (1993) Antimicrobial proteins of murine macrophages. Infect Immun 61:3038–3046

    PubMed  CAS  Google Scholar 

  • Hiemstra PS, van den Barselaar MT, Roest M, Nibbering PH, van Furth R (1999) Ubiqui-cidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages. J Leukoc Biol 66:423–428

    PubMed  CAS  Google Scholar 

  • Hirsch JG (1958) Bactericidal action of histone. J Exp Med 108:925–944

    Article  PubMed  CAS  Google Scholar 

  • Jakel S, Mingot JM, Schwarzmaier P, Hartmann E, Gorlich D (2002) Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J 21:377–386

    Article  PubMed  CAS  Google Scholar 

  • Joiner KA, Ganz T, Albert J, Rotrosen D (1989) The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes. J Cell Biol 109:2771–2782

    Article  PubMed  CAS  Google Scholar 

  • Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327:231–236

    Article  PubMed  CAS  Google Scholar 

  • Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63:1291–1297

    PubMed  CAS  Google Scholar 

  • Larrick JW, Hirata M, Shimomoura Y, Yoshida M, Zheng H, Zhong J, Wright SC (1993) Antimicrobial activity of rabbit CAP18-derived peptides. Antimicrob Agents Chemother 37:2534–2539

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T, Szklarek D, Selsted ME (1988) Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 81:1829–1835

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Szklarek D, Selsted ME, Fleischmann J (1981) Increased content of microbicidal cationic peptides in rabbit alveolar macrophages elicited by complete Freund adjuvant. Infect Immun 33:775–778

    PubMed  CAS  Google Scholar 

  • Leonova L, Kokryakov VN, Aleshina G, Hong T, Nguyen T, Zhao C, Waring AJ, Lehrer RI (2001) Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol 70:461–464

    PubMed  CAS  Google Scholar 

  • Modrzakowski MC, Cooney MH, Martin LE, Spitznagel JK (1979) Bactericidal activity of fractionated granule contents from human polymorphonuclear leukocytes. Infect Immun 23:587–591

    PubMed  CAS  Google Scholar 

  • Odaka C, Mizuochi T (1999) Role of macrophage lysosomal enzymes in the degradation of nucleosomes of apoptotic cells. J Immunol 163:5346–5352

    PubMed  CAS  Google Scholar 

  • Olsson I (1969) Chondroitin sulfate proteolycan of human leukocytes. Biochim Biophys Acta 177:241–249

    Article  PubMed  CAS  Google Scholar 

  • Ooi CE, Weiss J, Levy O, Eisbach P (1990) Isolation of two isoforms of a novel 15-kDa protein from rabbit polymorphonuclear leukocytes that modulate the antibacterial actions of other leukocyte proteins. J Biol Chem 265:15956–15962

    PubMed  CAS  Google Scholar 

  • Ouellette AJ, Lualdi JC (1990) A novel mouse gene family coding for cationic, cysteine-rich peptides. Regulation in small intestine and cells of myeloid origin. J Biol Chem 265:9831–9837

    PubMed  CAS  Google Scholar 

  • Panyutich A, Ganz T (1991) Activated alpha 2-macroglobulin is a principal defensinbinding protein. Am J Respir Cell Mol Biol 5:101–106

    PubMed  CAS  Google Scholar 

  • Panyutich AV, Hiemstra PS, Van Wetering S, Ganz T (1995) Human neutrophil defensin and serpins form complexes and inactivate each other. Am J Respir Cell Mol Biol 12:351–357

    PubMed  CAS  Google Scholar 

  • Panyutich AV, Szold O, Poon PH, Tseng Y, Ganz T (1994) Identification of defensin binding to C1 complement. FEBS Lett 356:169–173

    Article  PubMed  CAS  Google Scholar 

  • Parmley RT, Doran T, Boyd RL, Gilbert C (1986) Unmasking and redistribution of lysosomal sulfated glycoconjugates in phagocytic polymorphonuclear leukocytes. J His-tochem Cytochem 34:1701–1707

    Article  CAS  Google Scholar 

  • Patterson Delafield J, Martinez RJ, Lehrer RI (1980) Microbicidal cationic proteins in rabbit alveolar macrophages: a potential host defense mechanism. Infect Immun 30:180–192

    Google Scholar 

  • Romeo D, Skerlavaj B, Bolognesi M, Gennaro R (1988) Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 263:9573–9575

    PubMed  CAS  Google Scholar 

  • Ryan LK, Rhodes J, Bhat M, Diamond G (1998) Expression of beta-defensin genes in bovine alveolar macrophages. Infect Immun 66:878–881

    PubMed  CAS  Google Scholar 

  • Selsted ME, Brown DM, DeLange RJ, Lehrer RI (1983) Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem 258:14485–14489

    PubMed  CAS  Google Scholar 

  • Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI (1985) Primary structures of three human neutrophil defensins. J Clin Invest 76:1436–1439

    Article  PubMed  CAS  Google Scholar 

  • Selsted ME, Miller SI, Henschen AH, Ouellette AJ (1992a) Enteric defensins: antibiotic peptide components of intestinal host defense. J Cell Biol 118:929–936

    Article  PubMed  CAS  Google Scholar 

  • Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS (1992b) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267:4292– 4295

    PubMed  CAS  Google Scholar 

  • Selsted ME, Szklarek D, Lehrer RI (1984) Purification and antibacterial activity of antimi- crobial peptides of rabbit granulocytes. Infect Immun 45:150–154

    PubMed  CAS  Google Scholar 

  • Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W, Henschen AH, Cullor JS (1996) Purification, primary structures, and antibacterial activities of beta- defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 271:16430

    Article  PubMed  Google Scholar 

  • Shi J, Zhang G, Wu H, Ross C, Blecha F, Ganz T (1999) Porcine epithelial beta-defensin 1 is expressed in the dorsal tongue at antimicrobial concentrations. Infect Immun 67:3121–3127

    PubMed  CAS  Google Scholar 

  • Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, Nathan C (1999) Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10:29–38

    Article  PubMed  CAS  Google Scholar 

  • Sorensen O, Arnljots K, Cowland JB, Bainton DF, Borregaard N (1997) The human anti- bacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood 90:2796–2803

    PubMed  CAS  Google Scholar 

  • Storici P, Zanetti M (1993) A cDNA derived from pig bone marrow cells predicts a se- quence identical to the intestinal antibacterial peptide PR-39. Biochem Biophys Res Commun 196:1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins [see comments]. Science 286:498–502

    Article  PubMed  CAS  Google Scholar 

  • Tossi A, Scocchi M, Zanetti M, Storici P, Gennaro R (1995) PMAP-37, a novel antibacteri- al peptide from pig myeloid cells. cDNA cloning, chemical synthesis and activity. Eur J Biochem 228:941–946

    Article  PubMed  CAS  Google Scholar 

  • Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-as- sociated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214

    PubMed  CAS  Google Scholar 

  • Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a com- mon proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M, Storici P, Tossi A, Scocchi M, Gennaro R (1994) Molecular cloning and chemi- cal synthesis of a novel antibacterial peptide derived from pig myeloid cells. J Biol Chem 269:7855–8

    PubMed  CAS  Google Scholar 

  • Zarember K, Elsbach P, Shin-Kim K, Weiss J (1997) pl5 s (15-kD antimicrobial proteins) are stored in the secondary granules of Rabbit granulocytes: implications for anti- bacterial synergy with the bactericidal/permeability-increasing protein in inflamma- tory fluids. Blood 89:672–679

    PubMed  CAS  Google Scholar 

  • Zhao C, Ganz T, Lehrer RI (1995) Structures of genes for two cathelin-associated antimi- crobial peptides: prophenin-2 and PR-39. FEBS Lett 376:130–134

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ganz, T., Lehrer, R.I. (2003). Antimicrobial Peptides. In: Gordon, S. (eds) The Macrophage as Therapeutic Target. Handbook of Experimental Pharmacology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55742-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55742-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62919-8

  • Online ISBN: 978-3-642-55742-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics