Diagnostics in Multivariate Data Analysis: Sensitivity Analysis for Principal Components and Canonical Correlations

  • Y. Tanaka
  • F. Zhang
  • W. Yang
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


Sensitivity analysis procedures are formulated for principal component and canonical correlation analyses based on Cook’s local influence (Cook, 1986). The relationships are discussed between the results of the procedures based on the local influence and those based on the influence functions. A numerical example is shown to illustrate the procedure for canonical correlation analysis.


Canonical Correlation Analysis Normal Curvature Influence Function Multivariate Data Analysis Local Influence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BELSLEY, D. A., KUH, E. and WELSCH, R. E. (1980): Regression Diagnostics: Identifying Influential Data and Scources of Collinearity. John Wiley & Sons.Google Scholar
  2. COOK, R. D. (1986): Assessment of Local Influence. J. R. Statist Soc., B48, 133–169.Google Scholar
  3. COOK, R. D. and Weisberg, S. (1982): Residuals and Influence in Regression. Chapman and Hall.Google Scholar
  4. CRITCHLEY, F. (1985): Influence in Principal Component Analysis. Biometrika, 72, 627–636.MathSciNetMATHCrossRefGoogle Scholar
  5. GU, H. and FUNG, W. K. (1998): Assessing Local Influence in Canonical Analysis. Ann. lnst. Statist. Math., 69, No.4, 755–772.MathSciNetCrossRefGoogle Scholar
  6. HAMPEL, F. R. (1974): The Influence Curve and its Role in Robust Estimation. J. Amer. Statist. Assoc., 69, 383–393.MathSciNetMATHCrossRefGoogle Scholar
  7. KWAN, C. W. and FUNG, W. K. (1998): Assessing Local Influence for Specific Restricted Likelihood: Application to Factor Analysis. Psychometrika, 63, 35–46.MathSciNetMATHCrossRefGoogle Scholar
  8. LEE, S. Y. and WANG, S. J. (1996): Sensitivity Analysis of Structured Equation Models. Psychometrika, 61, 93–108.MathSciNetMATHCrossRefGoogle Scholar
  9. MAGNUS, J. R. and NEUDECKER, H. (1988): Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley & Sons.Google Scholar
  10. RADHAKRISHNAN, R. and KSHIRSAGER, A. M. (1981): Influence Functions for Certain Parameters in Multivariate Analysis. Comm. Statist.-Theory and Method, 10, 515–529.CrossRefGoogle Scholar
  11. ROMANAZZI, M. (1992): Influence in Canonical Correlation Analysis, Psychometrika, 57, 237–259.MathSciNetCrossRefGoogle Scholar
  12. SAS/STAT User’s Guide (1990): Version 6, Volume 1, SAS Institute Inc. Cary, NC, USAGoogle Scholar
  13. SEARLE, S. R. (1982): Matrix Algebra Useful for Statistics. John Wiley & Sons.Google Scholar
  14. SRI, L. (1997): Local Influence in Principal Component Analysis. Biometrika, 84, 175–186.MathSciNetCrossRefGoogle Scholar
  15. SIOTANI, M., Hayakawa, T. and FUJIKOSHI, Y (1985): Modern Multivariate Statistical Analysis: A Graduate Course and Handbook. American Science Press, Inc.Google Scholar
  16. TANAKA, Y. (1988): Sensitivity Analysis in Principal Component Analysis: Influence on the Subspace Spanned by Principal Components. Comm. Statist.-Theory and Method, 17, 3157–3175.MATHCrossRefGoogle Scholar
  17. TANAKA, Y. (1994): Recent Advance Sensitivity Analysis in Multivariate Methods. J. Jpn. Soc. Compo Statist., 7, 1–25.MATHGoogle Scholar
  18. TANAKA, Y. and Zhang, F. H. (1999): R-mode and Q-mode Influence Analysis in Statistical Modeling: Relationship between Influence Function Approach and Local Influence Approach Comm. Statist. & Data Analysis, 32, 197–218.MathSciNetCrossRefGoogle Scholar
  19. TANAKA, Y., Zhang, F. H. and Mori, Y. (1998): Influence in Principal Component Analysis Revisited, In Proceedings of the Third Conference on Statistical Computing of the Asian Regional Section of IASC, 319–330.Google Scholar
  20. ZHANG, F. H. and TANAKA, Y. (2001): A Note on the Assessment of Local Influence in Statistical Models with Equality Constraints. Technical Report, No. 74, Okayama Statistical Association, Okayama, Japan Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Y. Tanaka
    • 1
  • F. Zhang
    • 2
  • W. Yang
    • 3
  1. 1.Faculty of Environmental Science & TechnologyOkayama UniversityOkayamaJapan
  2. 2.Bellsystem24, Inc.TokyoJapan
  3. 3.Graduate School of Natural Science and TechnologyOkayama UniversityOkayama

Personalised recommendations