Skip to main content

Large-Time Behavior of Solutions to the Multi-Dimensional Euler Equations with Damping

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

Abstract

We consider the three-dimensional compressible Euler equations of isentropic gases with damping:

$$ \begin{array}{*{20}{c}} {{{\rho }_{t}} + \nabla \cdot (\rho u) = 0,} \\ {\rho ({{u}_{t}} + u \cdot \nabla u) + \nabla P = - c\rho u,} \\ \end{array} $$
((1))

where ρx, t) ∈ ℝ, u(x, t) ∈ ℝ3 represent the density, velocity of the gas, respectively; x = (x 1, x 2, x 3) ∈ ℝ3 is the space variable, t> 0 is the time variable; the pressure is P = P(ρ) = ργ/γ with γ ≥ 1 as the adiabatic exponent; c > 0 is a constant, and ε = 1/c may be called the relaxation time for some physical flows. We study the Cauchy problem of (1) with the initial condition:

$$ (\rho ,u){{|}_{{t = 0}}} = ({{\rho }_{0}}(x),{{u}_{0}}(x)). $$
((2))

We are interested in the damping effect on the regularity and large-time behavior of the smooth solutions. It will be proved that the size of the smooth initial data in certain norms plays the key role. If the initial data are small in an appropriate norm, the damping can prevent the development of singularities in smooth solutions and the Cauchy problem has a unique global smooth solution. If the initial data are large in certain form, the damping is not strong enough to prevent the formation of singularities even though the initial data are smooth. This indicates that the smoothness of the solution will break down in a finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alinhac, S. (1993): Temps de vie des solutions régulières des équations d’Euler compressibles axisymétriques en dimension deux. Invent. Math., 111, 627–670

    Article  MathSciNet  MATH  Google Scholar 

  2. Bianchini, S., Bressan, A. (2001): Vanishing viscosity solutions of nonlinear hyperbolic systems. preprint

    Google Scholar 

  3. Bressan, A. (1992): Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl., 170, 414–432

    Article  MathSciNet  MATH  Google Scholar 

  4. Canic, S., Keyfitz, B., Lieberman, G.M. (2000): A proof of existence of perturbed steady transonic shocks via a free boundary problem. Comm. Pure Appl. Math., 53, 484–511

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, G.-Q. (1986): Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III). Acta Math. Sci., 6, 75–120

    MATH  Google Scholar 

  6. Chen, G.-Q., Feldman, M. (2001): Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. Preprint, Northwestern University

    Google Scholar 

  7. Chen, G.-Q., Glimm, J. (1996): Global solution to the compressible Euler equations with geometrical structure. Commun. Math. Phys., 179, 153–193

    Article  MathSciNet  Google Scholar 

  8. Chen, G.-Q., Wang, D. (1996): Convergence of shock capturing schemes for the compressible Euler-Poisson equations. Commun. Math. Phys., 179, 333–364

    Article  MATH  Google Scholar 

  9. Chen, G.-Q., Wang, D. (1998): Shock capturing approximations to the compressible Euler equations with geometric structure and related equations. Z. Angew. Math. Phys., 49, 341–362

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, S.-X. (1998): Asymptotic behavior of supersonic flow past a convex combined wedge. Chinese Annals Math., 19B, 255–264

    Google Scholar 

  11. Dafermos, C.M. (1972): Polygonal approximations of solutions of the initial-value problem for a conservation law. J. Math. Anal. Appl., 38, 33–41

    Article  MathSciNet  MATH  Google Scholar 

  12. Dafermos, C.M. (1981): Can dissipation prevent the breaking of waves?. In: Transactions of the Twenty-Sixth Conference of Army Mathematicians, 187–198. ARO Rep. 81. 1, U. S. Army Res. Office, Research Triangle Park, North Carolina, USA

    Google Scholar 

  13. Dafermos, C.M. (1985): Development of singularities in the motion of materials with fading memory. Arch. Rational Mech. Anal., 91, 193–205

    Article  MathSciNet  Google Scholar 

  14. Dafermos, C.M. (1988): Solutions in L for a conservation law with memory. In: Analyse Mathématique et Applications, 117–128. Gauthier-Villars: Paris

    Google Scholar 

  15. Dafermos, C.M., Hsiao, L. (1986): Development of singularities in solutions of the equations of nonlinear thermoelasticity. Q. Appl. Math., 44, 463–474

    MathSciNet  MATH  Google Scholar 

  16. DiPerna, R. (1976): Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J. Diff. Eqs., 20, 187–212

    Article  MathSciNet  MATH  Google Scholar 

  17. DiPerna, R. (1983): Convergence of viscosity method for isentropic gas dynamics. Commun. Math. Phys., 91, 1–30

    Article  MathSciNet  MATH  Google Scholar 

  18. Engelberg, S., Liu, H., Tadmor, E. (2001): Critical thresholds in Euler-Poisson equations. Indiana Univ. Math. J., 50, 109–157

    Article  MathSciNet  MATH  Google Scholar 

  19. Gamba, I.M., Morawetz, C.S. (1996): A viscous approximation for a 2-D steady semiconductor or transonic gas dynamic flow: existence theorem for potential flow. Comm. Pure Appl. Math., 49, 999–1049

    Article  MathSciNet  MATH  Google Scholar 

  20. Glimm, J. (1965): Solutions in the large for nonlinear hyperbolic system of equations. Comm. Pure Appl. Math., 18, 95–105

    Article  MathSciNet  Google Scholar 

  21. Grassin, M., Serre, D. (1997): Existence de solutions globales et régulières aux équations d’Euler pour un gaz parfait isentropique. C. R. Acad. Sci. Paris Ser. I, 325, 721–726

    MathSciNet  MATH  Google Scholar 

  22. Hrusa, W.J., Messaoudi, S.A. (1990): On formation of singularities in one-dimensional nonlinear thermoelasticity. Arch. Rational Mech. Anal., 111, 135–151

    Article  MathSciNet  MATH  Google Scholar 

  23. Hsiao, L. (1997): uasilinear Hyperbolic Systems and Dissipative Mechanisms. World Scientific Publishing, Singapore

    Google Scholar 

  24. John, F. (1974): Formation of singularities in one-dimensional nonlinear wave propagation. Comm. Pure Appl. Math., 27, 377–405

    Article  MathSciNet  MATH  Google Scholar 

  25. Klainerman, S., Majda, A. (1980): Formation of singularities for wave equations including the nonlinear vibrating string. Comm. Pure Appl. Math., 33, 241–263

    Article  MathSciNet  MATH  Google Scholar 

  26. Lax, P.D. (1964): Development of singularities in solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys., 5, 611–613

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, T.-T. (1994): lobal Classical Solutions for Quasilineax Hyperbolic Systems. John Wiley & Sons, Ltd., Chichester

    Google Scholar 

  28. Lien, W.-C, Liu, T.-P. (1999): Nonlinear stability of a self-similar 3-dimensional gas flow. Commun. Math. Phys., 204, 525–549

    Article  MathSciNet  MATH  Google Scholar 

  29. Lions, P.-L., Perthame, B., Souganidis, P. (1996): Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math., 49, 599–638

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions, P.-L., Perthame, B., Tadmor, E. (1994): Kinetic formulation of the isentropic gas dynamics and p-systems. Commun. Math. Phys., 163, 169–172

    Article  MathSciNet  Google Scholar 

  31. Liu, T.-P. (1979): The development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations. J. Diff. Eqs., 33, 92–111

    Article  MATH  Google Scholar 

  32. Majda, A, (1984): Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences 53. Springer-Verlag, New York

    Google Scholar 

  33. Makino, T., Ukai, S., Kawashima, S. (1986): Sur la solution à support compact de I’iquations d’Euler compressible, Japan J. Appl. Math., 3, 249–257

    Article  MathSciNet  MATH  Google Scholar 

  34. Morawetz, C.S. (1985): On a weak solution for a transonic flow problem. Comm. Pure Appl. Math., 38, 797–818

    Article  MathSciNet  MATH  Google Scholar 

  35. Morawetz, C.S. (1995): On steady transonic flow by compensated compactness. Meth. Appl. Anal., 2, 257–268

    MathSciNet  MATH  Google Scholar 

  36. Nishida, T. (1978): Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics. Publications Mathematiques D’Orsay 78-02. Université de Paris-Sud, Orsay

    Google Scholar 

  37. Risebro, N.H. (1993): A front-tracking alternative to the random choice method. Proc. Amer. Math. Soc., 117, 1125–1139

    Article  MathSciNet  MATH  Google Scholar 

  38. Sideris, T.C. (1985): Formation of singularities in three-dimensional compressible fluids. Commun. Math. Phys., 101, 475–485

    Article  MathSciNet  MATH  Google Scholar 

  39. Sideris, T.C., Thomases, B., Wang, D. (2003): Decay and singularity formation for solutions to the three-dimensional Euler equations with damping. To appear in Commun. Partial Differential Equations.

    Google Scholar 

  40. Slemrod, M. (1981): Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity. Arch. Rational Mech. Anal., 76, 97–133

    Article  MathSciNet  MATH  Google Scholar 

  41. Tadmor, E. (1986): A minimum entropy principle in the gas dynamics equations. Appl. Numer. Math., 2, 211–219

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, D. (2001): Global solutions and relaxation limits of Euler-Poisson equations. Z. angew. Math. Phys., 52, 620–630

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, D., Chen, G.-Q. (1998): Formation of singularities in compressible Euler-Poisson fluids with heat diffusion and damping relaxation. J. Diff. Eqs., 144, 44–65

    Article  MATH  Google Scholar 

  44. Zhang, Y.-Q. (1999): Global existence of steady supersonic potential flow past a curved wedge with a piecewise smooth boundary. SIAM J. Math. Anal., 31, 166–183

    Article  MathSciNet  MATH  Google Scholar 

  45. Zheng, Y. (2001): Systems of Conservation Laws: Two-Dimensional Riemann Problems. Birkhäuser, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, D. (2003). Large-Time Behavior of Solutions to the Multi-Dimensional Euler Equations with Damping. In: Hou, T.Y., Tadmor, E. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55711-8_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55711-8_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62929-7

  • Online ISBN: 978-3-642-55711-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics