Skip to main content

Analysis of High Order Difference Methods for Multiscale Complex Compressible Flows

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

Abstract

Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes with incremental studies was initiated in [15, 16, 9] and summarized in [17]. Here we further refine the analysis on, and improve the understanding of the adaptive numerical dissipation control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Daru and C. Tenaud, Evaluation of TVD High Resolution Schemes for Unsteady Viscous Shocked Flows, Computers Fluids, 30 89–113 (2000).

    Article  Google Scholar 

  2. M. Gerritsen and P. Olsson, Designing an Efficient Solution Strategy for Fluid Flows I. J. Comput. Phys., 129 245–262 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Harten, On the Symmetric Form of Systems of Conservation Laws with Entropy, J. Comput. Phys., 49 (1983), pp. 151–164.

    Article  MathSciNet  MATH  Google Scholar 

  4. G.-S. Jiang and C.-W. Shu, Efficient Implementation of Weighted ENO schemes, ICASE Report No. 95–73, (1995).

    Google Scholar 

  5. P. Olsson and J. Oliger, J., Energy and Maximum Norm Estimates for Nonlinear Conservation Laws, RIACS Technical Report 94.01 (1994).

    Google Scholar 

  6. P. Olsson, High-order Difference Methods and Data Parallel Implementation, Doctoral Thesis, Department of Scientific Computing, Uppsala University, 1992.

    Google Scholar 

  7. P. Olsson, P., Summation by Parts, Projections, and Stability. I, Math. Compo 64 1035–1065 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Sjögreen, High Order Centered Difference Methods for the Compressible Navier-Stokes Equations, J. Comput. Phys., 117 67–78 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Sjögreen and H. C. Yee, Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computation, RIACS Technical Report TR01.01, NASA Ames research center (Oct 2000).

    Google Scholar 

  10. B. Sjögreen and H. C. Yee, Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous Compressible Flows, RIACS Technical Report TR01.06, April, 2001, NASA Ames research center; AIAA 2001-2599, Proceedings of the 15th AIAA CFD Conference, June 11–14, 2001, Anaheim, CA.

    Google Scholar 

  11. B. Sjögreen and H. C. Yee, Low Dissipative High Order Numerical Simulations of Supersonic Reactive Flows, RIACS Technical Report TR01-017, NASA Ames Research Center (May 2001); Proceedings of the ECCOMAS Computational Fluid Dynamics Conference 2001, Swansea, Wales, UK, September 4–7, 2001.

    Google Scholar 

  12. B. Strand, Summation by Parts for Finite Difference Approximations for d/dx, J. Comput. Phys. 110 47–67 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Tadmor, Skew-Selfadjoint Form for Systems of Conservation Laws, J. Math. Anal. Appl., 103 428–442 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  14. C. K. W. Tam, Computational Aeroacoustics: Issues and Methods, AIAA journal, 33 (1995), pp. 1788–1796.

    Article  MATH  Google Scholar 

  15. H.C. Yee, N.D. Sandham, N.D., and M.J. Djomehri, Low Dissipative High Order Shock-Capturing Methods Using Characteristic-Based Filters, J. Comput. Phys., 150 199–238 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  16. H.C. Yee, M. Vinokur, M., and M.J. Djomehri, Entropy Splitting and Numerical Dissipation, J. Comput. Phys., 162 33–81 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  17. H.C. Yee and B. Sjögreen, Designing Adaptive Low Dissipative High Order Schemes for Long-Time Integrations, Turbulent Flow Computation, (Eds. D. Drikakis & B. Geurts), Kluwer Academic Publisher (2002); also RIACS Technical Report TR01-28, Dec. 2001.

    Google Scholar 

  18. H.C. Yee and B. Sjögreen Designing Adaptive Low Dissipative High Order Schemes, Proceedings of the ICCFD2, Sydney, Australia, July 15–19, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sjögreen, B., Yee, H.C. (2003). Analysis of High Order Difference Methods for Multiscale Complex Compressible Flows. In: Hou, T.Y., Tadmor, E. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55711-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55711-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62929-7

  • Online ISBN: 978-3-642-55711-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics