Skip to main content

An Accurate Deterministic Projection Method for Hyperboles Systems with Stiff Source Term

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

Abstract

We study numerical methods for one-dimensional hyperboUc systems of balance laws (x ∈ ℝ u ∈ ℝN, N ≥1) with very stiff source terms:

$$ {{u}_{t}} + f{{(u)}_{x}} = \frac{1}{\varepsilon }S(u),\quad 0 < \varepsilon < < 1. $$
((1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abgrall, R., Karni, S. (2001): Computations of compressible multifluids. J. Comput. Phys., 169, 594–623

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao, W., Jin, S. (2000): The random projection method for hyperbolic conservation laws with stiff reaction terms. J. Comput. Phys., 163, 216–248

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, W., Jin, S. (2001): The random projection method for stiff detonation capturing. SIAM J. Sei. Comput., 23, 1000–1026

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, W., Jin, S. (2002): Error estimates on the random projection methods for hyperbolic conservation laws with stiff reaction terms. Appl. Num. Math., to appear.

    Google Scholar 

  5. Ben-Artzi, M. (1989): The generalized Riemann problem for reactive flows. J. Comput. Phys., 81, 70–101

    Article  MathSciNet  MATH  Google Scholar 

  6. Berkenbosch, A.C., Kaasschieter, E.F., Klein R. (1998): Detonation capturing for stiff combustion chemistry. Combust. Theory Model., 2, 313–348

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourlioux, A., Majda, A., Roytburd, V. (1991): Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math., 51, 303–343

    Article  MathSciNet  MATH  Google Scholar 

  8. Colella, P., Majda, A., Roytburd, V. (1986): Theoretical and numerical structure for reacting shock waves. SIAM J. Sci. Statist. Comput., 7, 1059–1080

    Article  MathSciNet  MATH  Google Scholar 

  9. Courant, R., Friedrichs, K.O. (1971): Supersonic Flow and Shock Waves. Inter-science, New York

    Google Scholar 

  10. Engquist, B., Sjogreen, B. (1991): Robust difference approximations of stiff inviscid detonation waves. CAM Report 91-03, UCLA

    Google Scholar 

  11. Fan, H., Jin, S., Teng, Z.H. (2000): Zero reaction limit for hyperbolic conservation laws with source terms. J. Differential Equations, 168, 270–294

    Article  MathSciNet  MATH  Google Scholar 

  12. Griffiths, D.F., Stuart A.M., Yee, H.C. (1992): Numerical wave propagation in an advection equation with a nonlinear source term. SIAM J. Numer. Anal., 29, 1244–1260

    Article  MathSciNet  MATH  Google Scholar 

  13. Helzel, C, LeVeque, R.J., Warnecke, G. (2000): A modified fractional step method for the accurate approximation of detonation waves. SIAM J. Sci. Comput., 22, 1489–1510

    Article  MathSciNet  MATH  Google Scholar 

  14. Hwang, P., Fedkiw, R.P., Merriman, B., Karagozian, A.K., Osher, S.J. (2000): Numerical resolution of pulsating detonation waves. Combust. Theory Model., 4, 217–240

    Article  MATH  Google Scholar 

  15. Kurganov, A., Noëlle, S., Petrova, G. (2000): Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sei. Comput., 22, 1461–1488

    Article  MATH  Google Scholar 

  16. LeVeque, R.J., Yee, H.C. (1990): A study of numerical methods for hyperboUc conservation laws with stiff source terms. J. Comput. Phys., 86, 187–210

    Article  MathSciNet  MATH  Google Scholar 

  17. Pember, R.B. (1993): Numerical methods for hyperbolic conservation laws with stiff relaxation I. Spurious solutions. SIAM J. Appl. Math., 53, 1293–1330

    Article  MathSciNet  MATH  Google Scholar 

  18. Sussman, M.A. (1993): Source term evaluation for combustion modeling. AIAA paper 93-0239

    Google Scholar 

  19. Wilhams, F.A. (1965): Combustion Theory. Addison-Wesley, Reading, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurganov, A. (2003). An Accurate Deterministic Projection Method for Hyperboles Systems with Stiff Source Term. In: Hou, T.Y., Tadmor, E. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55711-8_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55711-8_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62929-7

  • Online ISBN: 978-3-642-55711-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics