An Accurate Deterministic Projection Method for Hyperboles Systems with Stiff Source Term

  • Alexander Kurganov
Conference paper


We study numerical methods for one-dimensional hyperboUc systems of balance laws (x ∈ ℝ u ∈ ℝ N , N ≥1) with very stiff source terms:
$$ {{u}_{t}} + f{{(u)}_{x}} = \frac{1}{\varepsilon }S(u),\quad 0 < \varepsilon < < 1. $$


Detonation Wave Initial Value Problem Generalize Riemann Problem Deterministic Projection Stiff Source Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abgrall, R., Karni, S. (2001): Computations of compressible multifluids. J. Comput. Phys., 169, 594–623MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bao, W., Jin, S. (2000): The random projection method for hyperbolic conservation laws with stiff reaction terms. J. Comput. Phys., 163, 216–248MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bao, W., Jin, S. (2001): The random projection method for stiff detonation capturing. SIAM J. Sei. Comput., 23, 1000–1026MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bao, W., Jin, S. (2002): Error estimates on the random projection methods for hyperbolic conservation laws with stiff reaction terms. Appl. Num. Math., to appear.Google Scholar
  5. 5.
    Ben-Artzi, M. (1989): The generalized Riemann problem for reactive flows. J. Comput. Phys., 81, 70–101MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Berkenbosch, A.C., Kaasschieter, E.F., Klein R. (1998): Detonation capturing for stiff combustion chemistry. Combust. Theory Model., 2, 313–348MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bourlioux, A., Majda, A., Roytburd, V. (1991): Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math., 51, 303–343MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Colella, P., Majda, A., Roytburd, V. (1986): Theoretical and numerical structure for reacting shock waves. SIAM J. Sci. Statist. Comput., 7, 1059–1080MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Courant, R., Friedrichs, K.O. (1971): Supersonic Flow and Shock Waves. Inter-science, New YorkGoogle Scholar
  10. 10.
    Engquist, B., Sjogreen, B. (1991): Robust difference approximations of stiff inviscid detonation waves. CAM Report 91-03, UCLAGoogle Scholar
  11. 11.
    Fan, H., Jin, S., Teng, Z.H. (2000): Zero reaction limit for hyperbolic conservation laws with source terms. J. Differential Equations, 168, 270–294MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Griffiths, D.F., Stuart A.M., Yee, H.C. (1992): Numerical wave propagation in an advection equation with a nonlinear source term. SIAM J. Numer. Anal., 29, 1244–1260MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Helzel, C, LeVeque, R.J., Warnecke, G. (2000): A modified fractional step method for the accurate approximation of detonation waves. SIAM J. Sci. Comput., 22, 1489–1510MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Hwang, P., Fedkiw, R.P., Merriman, B., Karagozian, A.K., Osher, S.J. (2000): Numerical resolution of pulsating detonation waves. Combust. Theory Model., 4, 217–240MATHCrossRefGoogle Scholar
  15. 15.
    Kurganov, A., Noëlle, S., Petrova, G. (2000): Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sei. Comput., 22, 1461–1488MATHCrossRefGoogle Scholar
  16. 16.
    LeVeque, R.J., Yee, H.C. (1990): A study of numerical methods for hyperboUc conservation laws with stiff source terms. J. Comput. Phys., 86, 187–210MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Pember, R.B. (1993): Numerical methods for hyperbolic conservation laws with stiff relaxation I. Spurious solutions. SIAM J. Appl. Math., 53, 1293–1330MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Sussman, M.A. (1993): Source term evaluation for combustion modeling. AIAA paper 93-0239Google Scholar
  19. 19.
    Wilhams, F.A. (1965): Combustion Theory. Addison-Wesley, Reading, MAGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alexander Kurganov
    • 1
  1. 1.Department of MathematicsTulane UniversityNew OrleansUSA

Personalised recommendations