Advertisement

Phase Transitions and Chapman-Jouguet Combustions

  • Rinaldo M. Colombo
  • Andrea Corli
Conference paper

Abstract

We consider a system of conservation laws of the form
$$ {{\partial }_{t}}u + {{\partial }_{x}}f(u) = 0, $$
(1)
where t ∈ [0,+∞], xR, u ∈ Ω R n and the function f: Ω ↦ R n is smooth. Ω consists of two connected components, called here phases:
$$ \Omega = {{\Omega }_{0}} \cup {{\Omega }_{1}},\quad {{\Omega }_{0}} \cap {{\Omega }_{1}} = \O ,\quad {{\Omega }_{0}} \ne \O ,{{\Omega }_{1}} \ne \O . $$
(2)
The system (1) is strictly hyperbolic in Ω and each eigenvalue is either genuinely nonlinear or linearly degenerate.

Keywords

Cauchy Problem Phase Boundary Riemann Problem Riemann Solver Weak Entropic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Abeyaratne and J. K. Knowles. Kinetic relations and the propagation of phase boundaries in solids. Arch. Rational Mech. Anal., 114(2):119–154, 1991.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    F. Ancona and A. Marson. A wavefront tracking algorithm for N × N nongenuinely nonlinear conservation laws. J. Differential Equations, 177(2):454–493, 2001.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    S. Bianchini and A. Bressan. Vanishing viscosity solutions of nonlinear hyperbolic systems. Preprint.Google Scholar
  4. 4.
    A. Bressan. Hyperbolic systems of conservation laws. Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem.MATHGoogle Scholar
  5. 5.
    A. Bressan and R. M. Colombo. Unique solutions of 2 × 2 conservation laws with large data. Indiana Univ. Math. J., 44(3):677–725, 1995MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    R. M. Colombo and A. Corli. Continuous dependence in conservation laws with phase transitions. SIAM J. Math. Anal., 31(1):34–62 (electronic), 1999.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    R. M. Colombo and A. Corli. Sonic hyperbolic phase transitions and Chapman-Jouguet detonations. J. Differential Equations, to appear, 2001.Google Scholar
  8. 8.
    R. M. Colombo and A. Corli. Sonic and kinetic phase transitions with applications to Chapman-Jouguet deflagrations. Submitted, 2002.Google Scholar
  9. 9.
    A. Corli and M. Sablé-Tougeron. Stability of contact discontinuities under perturbations of bounded variation. Rend. Sem. Mat. Univ. Padova, 97:35–60, 1997.MathSciNetMATHGoogle Scholar
  10. 10.
    E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws. Springer-Verlag, New York, 1996.MATHGoogle Scholar
  11. 11.
    P. LeFloch. Propagating phase boundaries: formulation of the problem and existence via the Glimm method. Arch. Rational Mech. Anal., 123(2):153–197, 1993.MathSciNetCrossRefGoogle Scholar
  12. 12.
    T. P. Liu. The Riemann problem for general systems of conservation laws. J. Differential Equations, 18:218–234, 1975.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    M. Slemrod. Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal., 81(4):301–315, 1983.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Z. H. Teng, A. J. Chorin, and T. P. Liu. Riemann problems for reacting gas, with applications to transition. SIAM J. Appl. Math., 42(5):964–981, 1982.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    L. M. Truskinovskii. Dynamics of nonequilibrium phase boundaries in a heat conducting non-linearly lastic medium. Prikl. Mat. Mekh., 51(6):1009–1019, 1987.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rinaldo M. Colombo
    • 1
  • Andrea Corli
    • 2
  1. 1.Department of MathematicsUniversity of BresciaBresciaItaly
  2. 2.Department of MathematicsUniversity of FerraraFerraraItaly

Personalised recommendations