Skip to main content

Analysis on a Model for the Dynamic Combustion of a Compressible, Reacting Fluid

  • Conference paper
  • 1126 Accesses

Abstract

The global existence and large time behavior of solutions are established for a model which describes the dynamic combustion of a compressible, exothermically reacting fluid. Necessary and sufficient conditions for complete combustion are presented in certain cases. The adiabatic “constant” and specific heat depend on the mass fraction of the reactant and therefore vary in time and space. This model is formulated by the Navier-Stokes equations expressing the conservation of mass, the balance of momentum and energy, and two-species chemical kinetics. The results are obtained for large and discontinuous initial data (cf. Chen, Hoff and Trivisa [7].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Amosov and A. A. Ziotnick, A semidiscrete method for solving equations of the one-dimensional motion of a non-homogeneous viscous heat-conducting gas with nonsmooth data, Izv. Vyssh. Uchebn. Zaved. Mat. 1997, 3–19 (Russian); transl. in Russian Math. (Iz. VUZ) 41(1997), 1-17.

    Google Scholar 

  2. A. Bourlioux, A. J. Majda, and V. Roytburd, Theoretical and numerical structure for unstable one-dimensional detonations, SIAM J. Appl. Math. bd51 (1991), 303–343.

    Article  MathSciNet  Google Scholar 

  3. T. Chang and L. Hsiao, The Riemann problem and interaction of waves in gas dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, 41, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc.: New York, 1989.

    Google Scholar 

  4. G.-Q. Chen, Global solutions to the compressible Navier-Stokes equations for a reacting mixture, SIAM J. Math. Anal. bd23 (1992), 609–634.

    Article  Google Scholar 

  5. G.-Q. Chen, D. Hoff, and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data, Comm. Partial Duff. Eqs. bd25 (2000), 2233–2257.

    Article  MathSciNet  Google Scholar 

  6. G.-Q. Chen, D. Hoff, and K. Trivisa, On the Navier-Stokes equations for exothermically reacting compressible fluids, Acta Math. Appi. Sinica, bd18 (2002), 15–36.

    Article  MathSciNet  Google Scholar 

  7. G. Q. Chen, D. Hoff and K. Trivisa. Global Solutions to a Model for Exothermically Reacting, Compressible Flows with Large Discontinuous Initial Data. Submitted to Arch. Ration. Mech. Anal.

    Google Scholar 

  8. G.-Q. Chen and D. Wagner, Global entropy solutions to exothermically reacting, compressible Euler equations, J. Duff. Eqs. (to appear).

    Google Scholar 

  9. P. Collela, A. Majda and V. Roytburd, Theoretical and numerical structure for reacting shock waves, SIAM J. Sci. Stat. Comput. bd7 (1986), 1059–1080.

    Google Scholar 

  10. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Inter-science: New York, 1948. 11. C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal. bd13 (1982), 397–408.

    Google Scholar 

  11. J. Glimm, The continuous structure of discontinuities, Lecture Notes in Physics bd344 (1989), 177–186.

    MathSciNet  Google Scholar 

  12. E. Godlewski and P. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Appl. Math. Sc. bd118, Springer-Verlag: New York, 1996.

    Google Scholar 

  13. D. Hoff, Global well-posedness of the Cauchy problem for nonisentropic gas dynamics with discontinuous initial data, J. Duff. Eqs. bd95 (1992), 33–74.

    Article  MathSciNet  Google Scholar 

  14. D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow, Arch. Rational Mech. Anal. bd114 (1991), 15–46.

    Article  MathSciNet  Google Scholar 

  15. D. Hoff. Discontinuous solutions of the Navier-Stokes equations for multidimensional heat-conducting fluids, Arch. Rational Mech. Anal. bd139 (1997), 303–354.

    Article  MathSciNet  Google Scholar 

  16. D. Hoff and D. Serre. The failure of continuous dependence on the initial data for the Navier Stokes equations of compressible flow, SIAM J. Appl. Math. bd51 (1991), 887–898.

    Article  MathSciNet  Google Scholar 

  17. D. Hoff and M. Ziane, The global attraction and finite determining nodes for the Navier-Stokes equations of one dimensional compressible flow with discontinuous initial data, Indiana Univ. Math. J. 49(3) (2000), 843–889.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Kanel, On a model system of equations of one-dimensional gas motion, J. Duff. Eq. bd4 (1968), 374–380.

    MathSciNet  Google Scholar 

  19. A. V. Kazhikhov. On the theory of initial-boundary-value problems for the equations of one-dimensional nonstationary motion of a viscous heat-conductive gas, rDin. Sploshnoi Sredy bd50 (1981), 37–62 (Russian).

    MathSciNet  Google Scholar 

  20. A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary-value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech. bd41 (1977), 273–282.

    Article  MathSciNet  Google Scholar 

  21. A. Majda. High Mach number combustion, Lecture Notes in Appl. Math. bd24 (1986), 109–184.

    MathSciNet  Google Scholar 

  22. G. S. S. Ludford. Low Mach number combustion, Lecture Notes in Appl. Math. bd24 (1986), 3–74.

    Google Scholar 

  23. A. Matsumura and S. Yanagi, Uniform boundedness of the solutions for a one-dimensional isentropic model system of compressible viscous gas, Comm. Math. Phys. bd175 (1996), 259–274.

    Article  MathSciNet  Google Scholar 

  24. K. Trivisa. Global Existence and Asymptotic Analysis on a Model for the Dynamic Combustion of a Compressible, Reacting Fluid. In preparation.

    Google Scholar 

  25. F. A. Williams, Combustion Theory, Addison-Wesley, Reading, MA, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, GQ., Hoff, D., Trivisa, K. (2003). Analysis on a Model for the Dynamic Combustion of a Compressible, Reacting Fluid. In: Hou, T.Y., Tadmor, E. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55711-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55711-8_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62929-7

  • Online ISBN: 978-3-642-55711-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics