Das Seitenliniensystem

Part of the Springer-Lehrbuch book series (SLB)


Als dichtes Medium leitet Wasser mechanische Signale über weite Strecken. Jede Bewegung im Wasser erzeugt Strömungen und Druckwellen. Bei Fischen und bei ständig im Wasser lebenden Amphibienarten (z.B. dem Krallenfrosch, allen Kaulquappen und dem Axolotl) nimmt das Seitenliniensystem Wasserbewegungen relativ zum Körper wahr. Das Seitenliniensystem besteht
  • aus Känalen, die in die Haut versenkt und über Poren mit dem Außenwasser verbunden sind (Abb. 6.1),

  • aus Neuromasten, die in Reihen angeordnet frei auf der Haut stehen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blaxter JHS (1987) Structure and development of the lateral line. Biol Rev 62:471–514CrossRefGoogle Scholar
  2. Bleckmann H (1986) Perception of water surface waves:How surface waves are used for prey identification, prey localization, and intraspecific communication. Progr Sen Physiol 5:147–166CrossRefGoogle Scholar
  3. Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J Comp Physiol A 168:749–757PubMedGoogle Scholar
  4. Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172:115–128CrossRefGoogle Scholar
  5. Coombs S, Fay RR (1993) Source level discrimination by the lateral line system of the mottled sculpin, Cottus bairdi. ASA 93:2116–2123CrossRefGoogle Scholar
  6. Denton EJ, Gray JAB (1982) The rigidity offish and patterns of lateral line stimulation. Nature 297:679–681PubMedCrossRefGoogle Scholar
  7. Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc Roy Soc Lond B 218:1–26CrossRefGoogle Scholar
  8. Denton EJ, Gray JAB (1993) Stimulation of the Acoustico-Lateralis system of Clupeid Fish by external sources and their own movements. Philos Trans R Soc Lond [Biol] 341:113–127CrossRefGoogle Scholar
  9. Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38:51–105PubMedCrossRefGoogle Scholar
  10. Kroese ABA, Schellart NAM (1992) Velocity- and acceleration-sensitive units in the trunk lateral line of the trout. J Neurophysiol 68:2212–2221PubMedGoogle Scholar
  11. Lighthill J (1993) Estimates of pressure differences across the head of a swimming Clupeid Fish. Philos Trans R Soc Lond [Biol] 341:129–140CrossRefGoogle Scholar
  12. Montgomery J, Coombs S (1992) Physiological characterization of lateral line function in the antarctic fish Trematomus bernacchii. Brain Behav Evol 40:209–216PubMedCrossRefGoogle Scholar
  13. Montgomery J, Coombs S, Janssen J (1994) Form and function relationships in lateral line systems: comparative data from six species of antarctic notothenioid fish. Brain Behav Evol 44:299–306PubMedCrossRefGoogle Scholar
  14. Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in antarctic fish to the movements of planktonic prey. Science 235:195–196PubMedCrossRefGoogle Scholar
  15. Netten van SM (1991) Hydrodynamics of the excitation of the cupula in the fish canal lateral line. J Acoust Soc Am 89:310–319CrossRefGoogle Scholar
  16. Netten SM van, Khanna SM (1994) Stiffness changes of the cupula associated with the mechanics of hair cells in the fish lateral line. Proc Natl Acad Sci USA 91:1549–1553PubMedCrossRefGoogle Scholar
  17. Netten SM van, Vanmaarseveen JTPW (1994) Mechanophys-properties of the supraorbital lateral line canal in ruffe (Acerina cernua L). Proc R Soc Lond [Biol] 256:239–246CrossRefGoogle Scholar
  18. Starck D (1982) Vergleichende Anatomie der Wirbeltiere. Vol. 3. Springer, HeidelbergGoogle Scholar
  19. Teyke T (1988) Flow field, swimming velocity and boundary layer: parameters which affect the stimulus for the lateral line organ in blind fish. J Comp Physiol A 163:53–62PubMedCrossRefGoogle Scholar
  20. Teyke T (1989) Learning and remembering the environment in the blind cave fish Anoptichthys jordani. J Comp Physiol A 164:655–662CrossRefGoogle Scholar
  21. Teyke T (1990) Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behav Evol 35:23–30PubMedCrossRefGoogle Scholar
  22. Webb JF (1989) Gross morphology and evolution of the me-chanoreceptive lateral-line system in teleost fishes. Brain Behav Evolut 33:34–53CrossRefGoogle Scholar
  23. Wojtenek W, Mogdans J, Bleckmann H (1998) The responses of midbrain lateral line units in goldfish, Carassius auratus, to objects moving in the water. Zoology 101:69–82Google Scholar
  24. Wubbels RJ, Kroese ABA, Schellart NAM (1993) Response properties of lateral line and auditory units in the medulla oblongata of the rainbow trout (Oncorhynchus my-kiss). J Exp Biol 179:77–92Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Zoologisches InstitutUniversität MünchenMünchenGermany
  2. 2.Fachbereich Biologie — Zoologie —Universität MarburgMarburgGermany

Personalised recommendations