Advertisement

Chemische Sinne

Chapter
  • 635 Downloads
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Das Leben beruht auf biochemischen Prozessen. In jeder Zelle laufen vielfältige Reaktionen von Enzymketten ab, in denen Moleküle miteinander kommunizieren, um die Synthese von Proteinen zu regulieren, Rezeptormoleküle in Membranen ein- oder abzubauen, usw. Jede Zelle ist daher sensibel für ein Spektrum von Molekülen, die ihren Stoffwechsel und ihre Strukturen beeinflussen. Schon Einzeller und frühe Metazoen haben daraus ein allgemeines chemisches Umweltsen-sorium entwickelt, mit dem sie im Wasser bestimmte Substanzen erkennen können, welche Nahrung, Fressfeinde oder Sozialpartner signalisieren. Mit der wachsenden Fähigkeit, auf wechselnde Umgebungsbedingungen flexibel und differenziert reagieren zu können, entwickelt sich bei den höheren Metazoen der nach außen gerichtete chemische Sinn zu zwei getrennten Modalitäten:
  • dem Schmecken, das im direkten Kontakt Nahrung überprüft,

  • dem Riechen, das vor allem bei den Landtieren für die Fernwahrnehmung und Orientierung große Bedeutung gewinnt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abel R, Rybak J, Menzel R (2001) Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J Comp Neurol 437:363–383PubMedCrossRefGoogle Scholar
  2. Avenet P, Kinnamon SC (1991) Cellular basis of taste recep- tion. Curr Opin Neurobiol 1:198–203PubMedCrossRefGoogle Scholar
  3. Boeckh J, Ernst KD, Selsam P (1987) Neurophysiology and neuroanatomy of the olfactory pathway in the cockroach. Ann NY Acad Sci 510:39–43PubMedCrossRefGoogle Scholar
  4. Breer H, Boekhoff I, Tareilus E (1990) Rapid kinetics of second messenger formation in olfactory transduction. Nature 345:65–68PubMedCrossRefGoogle Scholar
  5. Buck LB (1996) Information coding in the vertebrate olfactory system. Ann Rev Neurosci 19:517–544PubMedCrossRefGoogle Scholar
  6. Caicedo A, Roper SD (2001) Taste receptor cells that dis- criminate between bitter stimuli. Science 291:1557–1560PubMedCrossRefGoogle Scholar
  7. Caprio J, Brand JG, Teeter JH, Valentincic T, Kalinoski DL, Kohbara J, Kumazawa T, Wegert S (1993) The taste sys- tem of the channel catfish: from biophysics to behavior. Trends Neurosci 16:192–197PubMedCrossRefGoogle Scholar
  8. Dulac C (2000) Sensory coding of pheromene signals in mammals. Curr Opin Neurobiol 10:511–518PubMedCrossRefGoogle Scholar
  9. Erickson RP, Dilorenzo PM, Woosbury MA (1994) Classifi- cation of taste responses in brain stem: Membership in fuzzy sets. J Neorophysiol 71:2139–2150Google Scholar
  10. Friedrich RW, Stopfer M (2001) Recent dynamics in ol-factory population coding. Curr Opin Neurobiol 11:468–474PubMedCrossRefGoogle Scholar
  11. Frisch K von (1941) Die Bedeutung des Geruchssinns im Leben der Fische. Naturw 29:321–333CrossRefGoogle Scholar
  12. Gadenne C, Dufour MC, Anmton S (2001) Transient post- mating inhibition of behavioural and central nervous responses to sex pheromones in an insect. Proc Royal Soc Lond B 268:1631–1635CrossRefGoogle Scholar
  13. Galizia CG, Sachse S, Rappert A, Menzel R (1999) The glo- merular code for odor representation is species specific in the honeybee, Apis mellifera. Nature Neuroci 2: 473–478CrossRefGoogle Scholar
  14. Galizia CG, Menzel R (2000) Odour perception in honey-bees: coding information in glomerular patterns. Curr Opin Neurobiol 10:504–510PubMedCrossRefGoogle Scholar
  15. Graves BM (1993) Chemical delivery to the vomeronasal or- gans and functional domain of squamate chemorecep- tion. Brain Behav Evol 41:198–202PubMedCrossRefGoogle Scholar
  16. Graves BM (1994) The role of nasolabial grooves and the vomeronasal system in recognition of home area by red- backed salamanders. Anim Behav 47:1216–1219CrossRefGoogle Scholar
  17. Haberly LB, Bower JM (1989) Olfactory Cortex: model circuit for study of associative memory. Trends Neurosci 12:258–264PubMedCrossRefGoogle Scholar
  18. Hansson BS, Ljungberg H, Hallberg F, Löfstedt C (1992) Functional specialization of olfactory glomeruli in a moth. Science 256:1313–1315PubMedCrossRefGoogle Scholar
  19. Hildebrand JG (1996) Olfactory control of behavior in moths: central processing of odor information and the functional significance of olfactory glomeruli. J Comp Physiol A 178:5–19PubMedCrossRefGoogle Scholar
  20. Hölldobler B, Wilson EO (1990) The ants. Springer, HeidelbergGoogle Scholar
  21. Hösl M (1990) Pheromone-sensitive neurons in the deutoce-rebrum of Periplaneta americana: receptive field on the antenna. J Comp Physiol A 167:321–328CrossRefGoogle Scholar
  22. Kaissling KE (1987) Transduction processes in olfactory receptors of moth. J Cell Biochem Suppl 10 C:33–43Google Scholar
  23. Kaissling KE (1990) Antennae and noses: their sensitivities as molecule detectors. Sensory transduction (Plenum Press) 81–97CrossRefGoogle Scholar
  24. Kaissling KE, Kramer E (1990) Sensory basis of pheromone-mediated orientation in moths. Verh Dtsch Zool Ges 83:109–131Google Scholar
  25. Kinnamon SC (1998) Taste transduction: a diversity of mechanisms. Trends Neurosci 11:491–496CrossRefGoogle Scholar
  26. Kotrschal K (1996) Solitary chemosensory cells: why do primary aquatic vertebrates need another taste system?Trends Evol Ecol 11:110–114CrossRefGoogle Scholar
  27. Lewcock JW, Reed RR (2001) Sweet successes. Neuron 31:515–517PubMedCrossRefGoogle Scholar
  28. Lindemann B (1995) Sweet and salty: transduction in taste.News Physiol Sci 10:166–170Google Scholar
  29. McClintock JB, Baker BJ (1998) Chemical ecology in the antarctic seas. Amer Sci 86:254–263CrossRefGoogle Scholar
  30. McLaughlin S, Margolskee R (1994) The sense of taste.Amer Sci 82:538–545Google Scholar
  31. Mason RT (1993) Chemical ecology of the Red-Sided Garter Snake, Thamnopis sirtalis parietalis. Brain Behav Evol 41:261–268PubMedCrossRefGoogle Scholar
  32. Mori K, Yoshihara Y (1995) Molecular recognition and olfactory processing in the mammalian olfactory system. Prog Neurobiol 45:585–619PubMedCrossRefGoogle Scholar
  33. Nakamura K, Norgren R (1993) Taste responses of neurons in the nucleus of the solitary tract of awake rats: an extended stimulus array. J Neurophysiol 70:879–891PubMedGoogle Scholar
  34. Neuweiler G (1993) Biologie der Fledermäuse. Thieme, StuttgartGoogle Scholar
  35. Penzlin H (1996) Lehrbuch der Tierphysiologie, 6. Aufl. G Fischer, Jena StuttgartGoogle Scholar
  36. Prosser CL (ed) (1991) Comparative animal physiology.4th edn. Wiley-Liss, New YorkGoogle Scholar
  37. Renehan WE, Jin Z, Zhang X, Schweitzer L (1996) Structure and function of gustatory neurons in the nucleus of the solitary tract: II Relationship between neuronal morphology and physiology. J Comp Neurol 367:205–221PubMedCrossRefGoogle Scholar
  38. Ronnett GV, Snyder SH (1992) Molecular messengers of ol-faction. Trends Neurosci 15:508–512PubMedCrossRefGoogle Scholar
  39. Roper SD (1991) The cell biology of vertebrate taste receptors.Ann Rev Neurosci 12:329–353CrossRefGoogle Scholar
  40. Roper SD (1992) The microphysiology of peripheral taste organs. J Neurosci 12:1127–1134PubMedGoogle Scholar
  41. Sato T, Okada Y, Miyamoto T (1995) Molecular mechanisms of gustatory transductions in frog taste cells. Progr Neurobiol 46:239–287Google Scholar
  42. Schneider D (1983) Kommunikation durch chemische Signale bei Insekten: alte und neue Beispiele von Lepidopteren. Verh Dtsch Zool Ges 76:5–16Google Scholar
  43. Schneider D (1992) 100 years of pheromone research. Naturw 79:241–250CrossRefGoogle Scholar
  44. Shofield PR (1988) Carrier-bound odorant delivery to olfactory receptors. Trends Neurosci 11:471–472CrossRefGoogle Scholar
  45. Schwenk K (1995) Of tongues and noses: chemoreception in lizards and snake. Trends Evol Ecol 10:7–12CrossRefGoogle Scholar
  46. Shepherd GM (1983) Neurobiology. Oxford Univ Press,New York OxfordGoogle Scholar
  47. Siewing R (1980) Lehrbuch der Zoologie Bd I. G Fischer,Stuttgart New YorkGoogle Scholar
  48. Travers SP, Norgren R (1995) Organization of olfactory responses in the nucleus of the solitary tract of the rat. J Neurophysiol 73:2144–2162PubMedGoogle Scholar
  49. Waters RM (1993) Odorized air current trailing by Garter Snakes, Thamnophis sirtalis. Brain Behav Evol 41: 219–223PubMedCrossRefGoogle Scholar
  50. Watson GM, Hessinger DA (1989) Cnidocyte mechanoreceptors are tuned to the movements of swimming prey by chemoreceptors. Science 243:1589–1591PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Zoologisches InstitutUniversität MünchenMünchenGermany
  2. 2.Fachbereich Biologie — Zoologie —Universität MarburgMarburgGermany

Personalised recommendations