Advertisement

Gedächtnis und Lernen

Chapter
  • 630 Downloads
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Das Gehirn besteht aus einer unüberschaubaren Zahl flexibler Verschaltungsensembles, die Funktionen kontrollieren und Funktionszustände repräsentieren. Die Organisation der Netzwerke beruht auf einem angeborenen Bauplan von Kernen und Cortices, deren Verschaltungen untereinander und auf deren innerer Organisation in Kolumnen, topologischen Funktionskarten, Mustergeneratoren usw. Innerhalb dieses artspezifisch vorgegebenen Organisationsschemas herrscht jedoch erhebliche Flexibilität. Der Grundbaustein „Neuron“ ist kein statisches, sondern ein dynamisches Element. Mit dem wechselnden Zustrom äußerer Einflüsse und dem Wechsel innerer Zustände verändern sich im Laufe einer Lebensgeschichte die Ausstattung von Synapsenmembranen mit Ionenkanälen und Rezeptoren. Die synaptischen Verknüpfungsmuster von Neuronen können sich einengen, ganz aufgelöst werden, oder aber sich auf zusätzliche Neurone ausweiten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abel T, Lattal KM (2001) Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Op Neuro-biol 11:180–187CrossRefGoogle Scholar
  2. Alkon DL, Fuortes MGF (1972) Responses of photoreceptors in Hermissenda. J Gen Physiol 60:631–649CrossRefGoogle Scholar
  3. Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331–356Google Scholar
  4. Brothers L, Ring B (1993) Mesial temporal neurons in the macaque monkey with responses selective for aspects of social stimuli. Behav Brain Res 57:53–61PubMedCrossRefGoogle Scholar
  5. Brown MW, Aggleton JP (2001) Recognition memory. Nature Rev Neurosci 2:51–61CrossRefGoogle Scholar
  6. Carew TJ, Sahley CL (1986) Invertebrate learning and memory: from behavior to molecules. Ann Rev Neurosci 9: 435–487PubMedCrossRefGoogle Scholar
  7. Clayton NS (1998) Memory and hippocampus in food-storing birds: a comparative approach. Neuropharmacol 37: 441–452CrossRefGoogle Scholar
  8. Clayton NS, Dickinson A (1998) Episodic-like memory during cache recovery by scrub jays. Nature 395:272–274PubMedCrossRefGoogle Scholar
  9. Clayton NS, Dickinson A (1999) Memory for the content of caches by scrub jays (Aphelocoma coerulescens). J Exp Psychol Anim Behav Processes 25:82–91CrossRefGoogle Scholar
  10. Collett TS, Collett M (2000) Path integration in insects.Curr Opin Neuriobiol 10:757–762CrossRefGoogle Scholar
  11. Eichenbaum H (2000) A cortical-hippocampal system for declarative memory. Nature Rev Neurosci 1:41–50CrossRefGoogle Scholar
  12. Etienne AS, Berlie J, Georgakopoulos J, Maurer R (1998) Role of dead reckoning in navigation. In: Healy S (ed) Spatial representation in animals. Oxford Univ Press, Oxford, pp 54–68Google Scholar
  13. Exton MS, Auer von AK, Buske-Kirschbaum A, Stockhorst U, Göbel U, Schedlowski M (2000) Pavlovian conditioning of immune function: animal investigation and the challenge of human application. Behav Brain Res 110: 129–141PubMedCrossRefGoogle Scholar
  14. Fuster JM (1997) Network memory. Trends Neurosci 20:451–459PubMedCrossRefGoogle Scholar
  15. Giufra M, Zhang S, Jenett A, Menzel R, Srinivasan MV (2001) The concept of ’sameness’ and ’difference’ in an insect. Nature 410:930–933CrossRefGoogle Scholar
  16. Glanzman DL (1995) The cellular basis of classical conditioning in Aplysia californica - it’s less simple than you think. Trends Neurosci 18:30–36PubMedCrossRefGoogle Scholar
  17. Kelso SR, Ganong AH, Brown TH (1986) Hebbian synapses in hippocampus. Proc Nat Acad Sci USA 83:5326–5330PubMedCrossRefGoogle Scholar
  18. Hampson RE, Simeral JD, Deadwyler SA (1999) Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402:610–614PubMedCrossRefGoogle Scholar
  19. Leonard CM, Rolls ET, Wilson FAW, Baylis GC (1985) Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res 15:159–179PubMedCrossRefGoogle Scholar
  20. Matzel LD, Gandhi CC (2000) The tractable contribution of synapses and their component molecules to individual differences in learning. Behav Brain Res 110:53–66PubMedCrossRefGoogle Scholar
  21. Matzel LD, Talk AC, Muzzio IA, Rogers RF (1998) Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation. Rev Neurosci 9: 129–167PubMedGoogle Scholar
  22. Menzel R, Giufra M (2001) Cognitive architecture of a mini-brain: the honeybee. Trends Cogn Sci 5:62–71PubMedCrossRefGoogle Scholar
  23. Menzel R, Müller U (1996) Learning and memory in honeybees: from behavior to substrates. Ann Rev Neurosci 19:379–404PubMedCrossRefGoogle Scholar
  24. Müller U (2000) Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27:1–20CrossRefGoogle Scholar
  25. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely moving rat. Brain Res 34:171–175PubMedCrossRefGoogle Scholar
  26. O’Keefe J, Burgess N (1996) Geometric determinants of the place fields of hippocampal neurons. Nature 381:425–428PubMedCrossRefGoogle Scholar
  27. Rolls ET (1999) Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9: 467–480PubMedCrossRefGoogle Scholar
  28. Rolls ET (2000) Memory systems in the brain. Ann Rev Psychol 51:599–630CrossRefGoogle Scholar
  29. Shapiro ML, Eichenbaum H (1999) Hippocampus as a memory map: synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus 9:365–384PubMedCrossRefGoogle Scholar
  30. Shelly D, Healy S (1998) Neural mechanisms of spatial representation. In: Healy S (ed) Spatial representation in animals. Oxford Univ Press, Oxford, pp 133–175Google Scholar
  31. Suzuki WA, Clayton NS (2000) The hippocampus and memory: a comparative and ethological approach. Curr Op Neurobiol 10:768–773PubMedCrossRefGoogle Scholar
  32. Wierazko A (1998) Avian hippocampus as a model to study spatial orientation-related synaptic plasticity. In: Ehrlich S (ed) Molecular and cellular mechanisms of neuronal plasticity. Plenum, New York, pp 107–129CrossRefGoogle Scholar
  33. Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H (2000) Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27:623–633PubMedCrossRefGoogle Scholar
  34. Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) (1999) Fundamental neuroscience. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Zoologisches InstitutUniversität MünchenMünchenGermany
  2. 2.Fachbereich Biologie — Zoologie —Universität MarburgMarburgGermany

Personalised recommendations