Tunneling Spectroscopy of Conventional and Unconventional Superconductors

  • J. Zasadzinski


Tunneling spectroscopy of conventional superconductors [1] such as Pb [2] leads to a complete description of the superconducting state. From the tunneling conductance \(\frac{{dI}}{{dV}}\) vs. V (appropriately normalized), one can obtain the quasiparticle density of states, N(E). This gives an implicit measure of the complex, superconducting gap parameter, Δ(E). Using Migdal-Eliashberg theory [3] the gap parameter can be “inverted” by the iterative McMillan- Rowell procedure (MR) [2] to obtain the microscopic interactions responsible for superconductivity, namely, the electron-phonon spectral function, α2 F(ω), and the renormalized coulomb pseudopotential, μ*. These quantities can then be used to determine the transition temperature, T c, as well as the electron mass enhancement, 1+λ, which enters normal state thermodynamic properties such as the specific heat [4]. In some cases the α2 F(ω), obtained from tunneling has been used to provide a very good fit of the temperature dependent electrical resistivity far above T c [5]. The fact that both superconducting and normal state quantities can be determined demonstrates both the accuracy of strong-coupling superconductivity theory and the power of the tunneling method. The various manifestations of the electron-phonon interaction can be found in the review articles of Carbotte [3] and Allen [4].


Tunnel Junction Andreev Reflection Tunneling Spectroscopy Tunneling Conductance Tunneling Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.L. Wolf, In: Principles of Electron Tunneling Spectroscopy (Oxford University Press, Oxford, 1985).Google Scholar
  2. 2.
    W.L. McMillan and J.M. Rowell, In: Superconductivity edited by R.D. Parks (Dekker, New York, 1969) pp. 561–331.Google Scholar
  3. 3.
    J.P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).ADSGoogle Scholar
  4. 4.
    P. Allen, ‘Electron-Phonon Coupling Constants’. In: Handbook of Superconductivity edited by Charles P. Poole (Academic, San Diego, 2000) pp. 478–489.Google Scholar
  5. 5.
    N. Tralshawala, J.F. Zasadzinski, L. Coffey, W. Gai, M. Romalis, Q. Huang, R. Vaglio, and K.E. Gray, Phys. Rev.B 51, 3812 (1995).ADSGoogle Scholar
  6. 6.
    Q. Huang, J.F. Zasadzinski, N. Tralshawala, K.E. Gray, D.G. Hinks, J.L. Peng and R.L. Greene, Nature (London) 347, 369 (1990).ADSGoogle Scholar
  7. 7.
    C.C. Tsuei and J.R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).ADSGoogle Scholar
  8. 8.
    H. Won, K. Maki, Phys. Rev. B 49, 1397 (1994).ADSGoogle Scholar
  9. 9.
    S.B. Kaplan, C.C. Chi, D.N. Langenberg, J.J. Chang, S. Jafarey and D.J. Scalapino, Phys. Rev. B 14, 4854 (1976).ADSGoogle Scholar
  10. 10.
    R.C. Dynes, V. Naraynamurti and J.P. Garno, Phys. Rev. Lett. 41, 1509 (1978).ADSGoogle Scholar
  11. 11.
    L. Ozyuzer, Z. Yusof, J.F. Zasadzinski, R. Mogilevsky, D.G. Hinks, K.E. Gray, Phys. Rev. B 57, 3245 (1998).ADSGoogle Scholar
  12. 12.
    Lutfi Ozyuzer, Zikri Yusof, John F. Zasadzinski, Ting-Wei Li, Dave G. Hinks, K.E. Gray, Physica C 320, 9 (1999).ADSGoogle Scholar
  13. 13.
    G.E. Blonder, M. Tinkham, and T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982).ADSGoogle Scholar
  14. Herbert Schmidt et al., unpublished.Google Scholar
  15. 15.
    C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994).ADSGoogle Scholar
  16. 16.
    Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451 (1995).ADSGoogle Scholar
  17. 17.
    Q. Huang, J.F. Zasadzinski and K.E. Gray, Phys. Rev. B 42, 7953 (1990).ADSGoogle Scholar
  18. 18.
    R.C. Jaklevi and J. Lambe, Phys. Rev. 165, 821 (1968).ADSGoogle Scholar
  19. 19.
    J. Halbritter, Surface Science 122, 80 (1982).ADSGoogle Scholar
  20. 20.
    R. Gross, In: Interfaces in Superconducting Systems edited by S.L. Shinde and D. Rudman (Springer, New York, 1994) p. 176.Google Scholar
  21. 21.
    J.R. Kirtley and D.J. Scalapino, Phys. Rev. Lett. 65, 798 (1990).ADSGoogle Scholar
  22. 22.
    Tetsuya Hasegawa, Hiroshi Ikuta, and Koichi Kitazawa, In: Physical Properties of High Temperature Superconductors III edited by D.M. Ginsberg (World Scientific Publishing, 1992).Google Scholar
  23. 23.
    John Zasadzinski, L. Ozyuzer, Z. Yusof, June Chen, K.E. Gray, R. Mogilevsky, D.G. Hinks, J.L. Cobb and J.T. Markert, In: Spectroscopic Studies of Superconductors edited by Ivan Bozovic and Dirk van der Marel (SPIE, Bellingham, 1996).Google Scholar
  24. 24.
    J.R. Kirtley, S. Washburn, D.J. Scalapino, Phys. Rev. B 45, 336 (1992).ADSGoogle Scholar
  25. 25.
    J.R. Schrieffer, In: Theory of Superconductivity (Addison-Wesley, 1964).Google Scholar
  26. 26.
    Walter A. Harrison, Phys. Rev. 123, 85 (1961).ADSGoogle Scholar
  27. 27.
    W.F. Brinkman, R.C. Dynes and J.M. Rowell, J. Appl. Phys. 41, 1915 (1970).ADSGoogle Scholar
  28. 28.
    M.R. Norman, M. Randeria, H. Ding, J.C. Campuzano, Phys. Rev. B 52, 615 (1995).ADSGoogle Scholar
  29. 29.
    Satoshi Sugita, Takao Watanabe and Azusa Matsuda, Phys. Rev. B 62, 8715 (2000).ADSGoogle Scholar
  30. 30.
    Y. DeWilde, N. Miyakawa, P. Guptasarma, M. Iavarone, L. Ozyuzer, J.F. Zasadzinski, P. Romano, D.G. Hinks, C. Kendziora, G.W. Crabtree, K.E. Gray, Phys. Rev. Lett. 80, 153 (1998).ADSGoogle Scholar
  31. 31.
    Z. Yusof, J.F. Zasadzinski, L. Coffey, N. Miyakawa, Phys. Rev. B 58, 514 (1998).ADSGoogle Scholar
  32. 32.
    J. Geerk, G. Linker and R. Smithey, Phys. Rev. Lett. 57, 3284 (1986).ADSGoogle Scholar
  33. 33.
    E.L. Wolf and G.B. Arnold, Phys. Reports 91, 31 (1982).ADSGoogle Scholar
  34. 34.
    J. Halbritter, J. Appl. Phys. 58, 1320 (1985).ADSGoogle Scholar
  35. 35.
    E.L. Wolf and J.F. Zasadzinski, Phys. Lett. 62A, 165 (1978).ADSGoogle Scholar
  36. 36.
    E.L. Wolf, J. Zasadzinski, J.W. Osmun and G.B. Arnold, J. Low Temp. Phys. 40, 19 (1980).ADSGoogle Scholar
  37. 37.
    J. Zasadzinski, D.M. Burnell, E.L. Wolf, and G.B. Arnold, Phys. Rev. B 25, 1622 (1982).ADSGoogle Scholar
  38. 38.
    see for example In: Superconducting Devices edited by Steven T. Ruggiero and David A. Rudman (Academic Press, San Diego, 1990).Google Scholar
  39. 39.
    J.G. Bednorz and K.A. Müller, Z. Phys. B 64, 189 (1986).ADSGoogle Scholar
  40. 40.
    K.E. Gray, M.E. Hawley and E.R. Moog, In: Novel Superconductivity. edited by S.A. Wolf and V.Z. Krezin (Plenum, New York, 1987) p. 611.Google Scholar
  41. 41.
    J.R. Kirtley, Int. J. Mod. Phys. B4, 201 (1990)ADSGoogle Scholar
  42. 42.
    F. Shafiri, A.N. Pargellis and R.C. Dynes, Phys. Rev. Lett. 67, 509 (1991).ADSGoogle Scholar
  43. 43.
    P. Samuely, N.L. Bobrov, A.G.M. Jansen, P. Wyder, S.N. Barilo and S.V. Shiryaev, Phys. Rev. B 48, 13, 904 (1993).Google Scholar
  44. 44.
    Lutfi Ozyuzer, John F. Zasadzinski, Chris Kendziora, K.E. Gray, Phys. Rev. B 61, 3629 (2000).ADSGoogle Scholar
  45. 45.
    H.J. Kaufmann, Oleg V. Dolgov, and E.K.H. Salje, Phys. Rev. B 58, 9479 (1998).ADSGoogle Scholar
  46. 46.
    B. Stadiober, G. Krug, R. Nemetschek, R. Hackl, J.L. Cobb, J.T. Markert, Phys. Rev. Lett. 74, 4911 (1995).ADSGoogle Scholar
  47. 47.
    C.C. Tsuei and J.R. Kirtley, Phys. Rev. Lett. 85, 182 (2000).ADSGoogle Scholar
  48. 48.
    N. Miyakawa, J.F. Zasadzinski, L. Ozyuzer, P. Guptasarma, D.G. Hinks, C. Kendziora and K.E. Gray, Phys. Rev. Lett. 83, 1018 (1999).ADSGoogle Scholar
  49. 49.
    L. Ozyuzer, J.F. Zasadzinski and N. Miyakawa, Int. J. Mod. Phys. B 29–31, 3721 (1999).Google Scholar
  50. 50.
    Ch. Renner and Ø. Fischer, Phys. Rev. B 51, 9208 (1995).ADSGoogle Scholar
  51. 51.
    Ch. Renner et al., J. Low Temp. Phys. 105, 1083 (1996).ADSGoogle Scholar
  52. 52.
    H.L. Liu, G. Blumberg, M.V. Klein, P. Guptasarma and D.G. Hinks, Phys. Rev. Lett. 82, 9208 (1999).Google Scholar
  53. 53.
    J.L. Talion and J.W. Loram, cond-mat/0005063 (unpublished).Google Scholar
  54. 54.
    R.S. Markiewicz and C. Kusko, Phys. Rev. Lett. 84, 5674 (2000).ADSGoogle Scholar
  55. 55.
    Sudip Chakravarty, R.B. Laughlin, Dirk K. Morr and Chetan Nayak, condmat/0005443 (unpublished).Google Scholar
  56. 56.
    John Zasadzinski and Nobuaki Miyakawa, Phys. Rev. Let. 84, 5675 (2000).Google Scholar
  57. 57.
    N. Miyakawa, J.F. Zasadzinski, L. Ozyuzer, P. Guptasarma, C. Kendziora, D.G. Hinks, T. Kaneko and K.E. Gray, Physica C 341-348, 835 (2000).Google Scholar
  58. 58.
    V.J. Emery and S.A. Kivelson, Nature (London) 374, 434 (1998).ADSGoogle Scholar
  59. 59.
    Qijin Chen, loan Kosztin, Boldizsar Janko and K. Levin, Phys. Rev. Lett. 81, 4708 (1998).ADSGoogle Scholar
  60. 60.
    T. Nakano, N. Momono, M. Oda and M. Ido, J. Phys. Soc. Jpn. 67, 2622 (1998).ADSGoogle Scholar
  61. 61.
    J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. Lett. 80, 3839 (1998).ADSGoogle Scholar
  62. 62.
    Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki and O. Fischer, Phys. Rev. Lett. 80, 149 (1998).ADSGoogle Scholar
  63. 63.
    M. Franz and A.J. Millis, Phys. Rev. B 58, 14, 572 (1998).Google Scholar
  64. 64.
    J. Corson, R. Mallozzi, J. Orenstein, J.N. Eckstein, and I. Bozovic, Nature (London) 398, 221 (1999).ADSGoogle Scholar
  65. 65.
    Toshikazu Ekino, Yoshie Sezaki and Hironobu Fujii, Phys. Rev. B 60, 6916 (1999).ADSGoogle Scholar
  66. 66.
    T. Takahashi, T. Sato, T. Yokoya, T. Kamiyama, T. Naitoh, T. Mochiku, K. Yamada, Y. Endoh and K. Kadowaki, J. Phys. Chem. Solids 62, 41 (2001).ADSGoogle Scholar
  67. 67.
    Q. Huang, J.F. Zasadzinski, K.E. Gray, J.Z. Liu and H. Claus, Phys. Rev. B 40, 9366 (1989).ADSGoogle Scholar
  68. 68.
    J.F. Zasadzinski, L. Qzyuzer, N. Miyakawa, K.E. Gray, D.G. Hinks and C. Kendziora, Phys. Rev. Lett. 87, 067005 (2001).ADSGoogle Scholar
  69. 69.
    H.F. Fong, B. Keimer, D.L. Milius and I.A. Aksay, Phys. Rev. Lett. 78, 713 (1997).ADSGoogle Scholar
  70. 70.
    Pengcheng Dai, H.A. Mook, S.M. Hayden, G. Aeppli, T.G. Terring, R.D. Hunt and F. Dogan, Science 284, 1344 (1999).ADSGoogle Scholar
  71. 71.
    E.W. Hudson, S.H. Pan, A.K. Gupta, K.-W. Ng, J.C. Davis, Science 5285, 88 (1999).ADSGoogle Scholar
  72. 72.
    S.H. Pan et al., Nature (London) 403, 746 (2000).ADSGoogle Scholar
  73. 73.
    S.L. Cooper and K.E. Gray, In: Physical Properties of High Temperature Superconductors, edited by D.M. Ginsberg (World Scientific, Singapore, 1994) p. 61.Google Scholar
  74. 74.
    R. Kleiner, F. Steinmeyer, G. Kunkel and P. Müller, Phys. Rev. Lett. 68, 2394 (1992).ADSGoogle Scholar
  75. 75.
    R. Kleiner and P. Müller, Phys. Rev. B 49, 1327 (1994).ADSGoogle Scholar
  76. 76.
    A.A. Yurgens, Sup. Sci. Tech. 13, R85 (2000).ADSGoogle Scholar
  77. 77.
    Minoru Suzuki and Keiichi Tanabe, Jpn. J. Appl. Phys. 35, L482(1996).ADSGoogle Scholar
  78. 78.
    A. Yurgens, D. Winkler, T. Claeson, S-J Hwang and J-H Choy, Int. J. Mod. Phys. B 13, 3758 (1999).ADSGoogle Scholar
  79. 79.
    V.M. Krasnov, A. Yurgens, D. Winkler, P. Delsing and T. Claeson, Phys. Rev. Lett. 84, 5860 (2000).ADSGoogle Scholar
  80. 80.
    Minoru Suzuki and Takao Watanabe, Phys. Rev. Lett. 85, 4787 (2000).ADSGoogle Scholar
  81. 81.
    M. Gurvitch, J.M. Valles Jr., A.M. Cuculo, R.C. Dynes, J.P. Garno, L.F. Schneemeyer and J.V. Waszczak, Phys. Rev. Lett. 63, 1008 (1989).ADSGoogle Scholar
  82. 82.
    H.L. Edwards, D.J. Derro, A.L. Barr, J.T. Markert and A.L. de Lozanne, Phys. Rev. Lett. 75, 1387 (1995).ADSGoogle Scholar
  83. 83.
    T. Walsh, Int. J. Mod. Phys. B 6, 126 (1992).ADSGoogle Scholar
  84. 84.
    L. Alff, S. Kleefisch, U. Schoop, M. Zittartz, T. Kernen, T. Bauch, A. Marx and R. Gross, Eur. Phys. J. B 5, 423 (1998).ADSGoogle Scholar
  85. 85.
    Saion Sinha and K.W. Ng, Superlattices and Microstructures 25, 1055 (1999).ADSGoogle Scholar
  86. 86.
    M. Covington, M. Aprili, E. Paraoanu, L.H. Greene, F. Xu, J. Zhu, and C.A. Mirkin, Phys. Rev. Lett. 79, 277 (1997).ADSGoogle Scholar
  87. 87.
    M. Fogelström, D. Rainer and J.A. Sauls, Phys. Rev. Lett. 79, 281 (1997).ADSGoogle Scholar
  88. 88.
    L.H. Greene, M. Covington, M. Aprili, E. Badica, D.E. Pugel, Physica B 280, (2000).Google Scholar
  89. 89.
    M. Sigrist, Physica C 341–348, 695 (2000).Google Scholar
  90. 90.
    J.Y.T. Wei, N.-C. Yeh, D.F. Garrigus, and M. Strasik, Phys. Rev. Lett. 81, 2542 (1998).ADSGoogle Scholar
  91. 91.
    T. Cren, D. Roditchev, W. Sacks, J. Klein, Europhys. Lett. 52, 203 (2000).ADSGoogle Scholar
  92. 92.
    F. Steglich, N. Sato, T. Tayama, T. Lühmann, C. Langhammer, P. Gegenwart, P. Hinze, C. Geibel, M. Lang, G. Spain and W. Assmus, Physica C 341–348, 691 (2000).Google Scholar
  93. 93.
    Y. DeWilde, J. Heil, A.G.M. Jansen, P. Wyder, R. Deltour, W. Assmus, A. Menorsky, W. Sun and L. Taillefer, Phys. Rev. Lett. 72, 2278 (1994).ADSGoogle Scholar
  94. 94.
    U. Poppe, J. Mag. Magn. Mat. 52, 157 (1985).ADSGoogle Scholar
  95. 95.
    A. Nowack, A. Heinz, F. Oster, D. Wohlleben, G. Güntherodt, Z. Fisk and A. Menorsky, Phys. Rev. B 36, 2436 (1987).ADSGoogle Scholar
  96. 96.
    Ch. Wälti, H.R. Ott, Z. Fisk, J.L. Smith, Phys. Rev. Lett. 84, 5616 (2000).ADSGoogle Scholar
  97. 97.
    M. Jourdan, M. Huth and H. Adrian, Nature 398, 47 (1999).ADSGoogle Scholar
  98. 98.
    Ross H. McKenzie, Science 278, 820 (1997).ADSGoogle Scholar
  99. 99.
    H. Bando, S. Kashiwaya, H. Tokumoto, H. Anzai, N. Kinoshita and K. Kajimura, J. Vac. Sci. Technol. A 8, 479 (1990).ADSGoogle Scholar
  100. 100.
    A. Nowack, U. Poppe, M. Weger, D. Schweitzer and H. Schwenk, Z. Phys. B — Condensed Matter 68, 41 (1987).ADSGoogle Scholar
  101. 101.
    M.E. Hawley, K.E. Gray, B.D. Terris, H.H. Wang, K.D. Carlson and Jack M. Williams, Phys. Rev. Lett. 57, 629 (1986).ADSGoogle Scholar
  102. 102.
    M. Dresselhaus, G. Dresselhaus, P. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA. 1996).Google Scholar
  103. 103.
    Laszlo Forro and Laszlo Mihaly, Rep.Prog. Phys. 64, 649 (2001).ADSGoogle Scholar
  104. 104.
    S. Nolen, S.T. Ruggiero, Chem. Phys. Lett. 300, 656 (1999).ADSGoogle Scholar
  105. 105.
    Y. DeWilde, M. Iavarone, U. Welp, V. Metlushko, A.E. Koshelev, I. Aranson, G.W. Crabtree and P.C. Canfield, Phys. Rev. Lett. 78, 4273 (1997).ADSGoogle Scholar
  106. 106.
    Toshikazu Ekino, H. Fujü, M. Kosugi, Y. Zenitani and J. Akimitsu, Phys. Rev. B 53, 5640 (1996).ADSGoogle Scholar
  107. 107.
    H. Suderow, P. Martinez-Samper, N. Luchier, J.P. Brison, S. Vieira and P.C. Canfield, Phys. Rev. B 64, 020503 (2001).ADSGoogle Scholar
  108. 108.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001).ADSGoogle Scholar
  109. 109.
    H. Schmidt, J.F. Zasadzinski, K.E. Gray and D.G. Hinks, Phys. Rev. B 63, 220504 (2001).ADSGoogle Scholar
  110. 110.
    G. Rubio-Bollinger, H. Suderow and S. Vieira, Phys. Rev. Lett. 86, 5582 (2001).ADSGoogle Scholar
  111. 111.
    A.Y. Liu, I.I. Mazin and J. Kortus, cond-mat/0105146 (unpublished).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. Zasadzinski
    • 1
  1. 1.Physics DeptIllinois Institute of TechnologyChicagoUSA

Personalised recommendations