Advertisement

Bacterial communities in uranium mining waste piles and their interaction with heavy metals

  • Sonja Selenska-Pobell
  • Katrin Flemming
  • Tzvetelina Tzvetkova
  • Johannes Raff
  • Michaela Schnorpfeil
  • Andrea Geißler

Abstract

High diversity and significant differences were found in the structures of bacterial communities present in several U mill tailings and U mining waste piles. Many bacterial strains were successfully cultured from those uranium wastes, most of which are unusually effective in different biotransformations of U. The molecular basis for the selective and reversible binding of U and some other toxic metals by one of the natural bacterial isolates was found to be a novel kind of S-layer protein. Our analysis indicates that uranium wastes are a valuable reservoir for unusual microorganisms prospective for bacteria-based bioremediation.

Keywords

Acidithiobacillus Ferrooxidans Mill Tailing Lateral Genetic Transfer Uranium Mill Tailing Uranium Waste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang Y-J, Peacock AD, Long PE, Stephen JR, McKinley JP, Macnaughton SJ, Hussain AKMA, Saxton AM, White DC (2001) Diversity and characterization of sulfatereducing bacteria in groundwater at a uranium mill tailings site. Appl Environ Microbiol 67: 3149-3160CrossRefGoogle Scholar
  2. Dojka MA, Harris JK, Pace NR (2000) Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl Env Microbiol 66: 1617-1621CrossRefGoogle Scholar
  3. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) Version 3.5c Department of Genetics, University of Washington, Seatle.Google Scholar
  4. Goebel BM, Stackebrandt E (1994) Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60: 1614-1621Google Scholar
  5. Ivanova I A, Stephen JR, Chang Y-J, Brüggemann J, Long PEL, McKinley JP, Kowalchuk GA, White DC (2000) A survey of 16S rRNA and amoA genes related to autotrophic ammonia-oxidizing bacteria of the ß-subdivision of the class proteobacteria in contaminated ground water. Can J Microbiol 46: 1012-1020Google Scholar
  6. Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K.. 1998. Extremely barophilic bacteria isolated from the Mariana Trench Challenger Deep at a depth of 11000 meters. Appl Environ Microbiol 64: 1510-1513Google Scholar
  7. Liu, SV, Zhou J, Zhang C, Cole D, Gajdarziska-Josifovska C, and Phelps T J (1997) Ther-mophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science 277:1106-1109.CrossRefGoogle Scholar
  8. Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechn 12: 248-253CrossRefGoogle Scholar
  9. Pace N (1997) A molecular view of microbial diversity and the biosphere. Science 276:734-740CrossRefGoogle Scholar
  10. Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20: 399-414.CrossRefGoogle Scholar
  11. Raff J (2002) PhD Thesis, University of Leipzig; March 2002Google Scholar
  12. Selenska-Pobell S (1995) Direct and simultaneous extraction of DNA and RNA from soil. In: Akkermans ADL, van Elsas JD, De Bruijn FJ, eds Molecular Microbial Ecology Manual 1.5.1. Dordrecht Netherlands: Kluwer Academic Publishers pp. 1-17Google Scholar
  13. Selenska-Pobell S, Miteva V, Boudakov I, Panak P, Bernhard G, and Nitsche H (1999) Selective accumulation of heavy metals by three indigenous Bacillus isolates, B. cereus, B. megaterium and B. sphaericus in drain waters from a uranium waste pile. FEMS Microbiol Ecology 29: 59-67CrossRefGoogle Scholar
  14. Selenska-Pobell S, Flemming K, Kampf G, Radeva G, Satchanska G (2001) Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and the 16S rDNA retrieval. Antonie van Leewenhuek 79: 149-161CrossRefGoogle Scholar
  15. Selenska-Pobell S (2002) Diversity and activity of bacteria in uranium waste piles, In: Keith-Roach M & Livens F, ed. Interactions of Microorganisms with Radionuclides. Oxford, UK; Elsevier Sciences; pp. 225-253Google Scholar
  16. Strous, M, Fuest J A, Kramer E H M, Logemann S, Muyzer G, van de Pas-Schoonen K, Webb R, Kuenen JG, and Jetten K S M (1999). Missing lithotroph identified as new planctomycete. Nature 400: 446-449 CrossRefGoogle Scholar
  17. Takai, K, Moser D P, Onstott T C, Spoelstra N, Pfìffher S M, Dohnalkova AFredrickson, JK (2001) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol 51: 1245-1256Google Scholar
  18. Tzvetkova I, Tzvetkova Tz, Groudeva V, Selenska-Pobell S (2001) Bacteria cultured from soil samples of uranium mining waste piles. In: Fanghaenel T, ed. FZR-Report-318: p. 39Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Sonja Selenska-Pobell
    • 1
  • Katrin Flemming
    • 2
  • Tzvetelina Tzvetkova
    • 3
  • Johannes Raff
    • 4
  • Michaela Schnorpfeil
    • 5
  • Andrea Geißler
    • 6
  1. 1.Institute of RadiochemistryForschungszentrum RossendorfDresdenGermany
  2. 2.Institute of RadiochemistryForschungszentrum RossendorfDresdenGermany
  3. 3.Institute of RadiochemistryForschungszentrum RossendorfDresdenGermany
  4. 4.Institute of RadiochemistryForschungszentrum RossendorfDresdenGermany
  5. 5.Institute of RadiochemistryForschungszentrum RossendorfDresdenGermany
  6. 6.Institute of RadiochemistryForschungszentrum RossendorfDresdenGermany

Personalised recommendations