Skip to main content

Abstract

For a bounded Lipschitz domain Ω ⊂ ℝn, n ≥ 2, and a function u OW 11 (Ω;ℝN) we consider the variational problem

$$ J\left[ w \right] = \int_{\Omega } {f\left( {\nabla w} \right)} {\text{ }}dx \to \min {\text{ in }}{{u}_{0}} + {{\mathop{W}\limits^{ \circ } }_{1}}^{1}\left( {\Omega ;{{\mathbb{R}}^{N}}} \right) $$
(1)

where f:ℝnN → [0,∞]is a strictly convex integrand of linear growth, i.e.

$$a\left| Z \right| - b \leqslant f(Z) \leqslant A\left| Z \right| + B\,\,for\,all\,Z \in {\mathbb{R}^{{nN}}}$$
(2)

holds with suitable constants a, A > 0, b,B ∈ ℝ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosio, L., Fusco, N., Pallara, D. (2000): Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications, Clarendon Press, Oxford

    MATH  Google Scholar 

  2. Anzellotti, G., Giaquinta, M. (1988): Convex functional and partial regularity. Arch. Rat. Mech. Anal., 102. 243–272

    Article  MathSciNet  MATH  Google Scholar 

  3. Bildhauer, M. (2001): Convex Variational Problems with Linear, Nearly Linear and/or Anisotropic Growth Conditions. Habilitationsschrift (submitted), Saarland University, Saarbrücken

    Google Scholar 

  4. Bildhauer, M. (2002): A priori gradient estimates for bounded generalized solutions of a class of variational problems with linear growth. To appear in J. Convex Anal.

    Google Scholar 

  5. Bildhauer, M., Fuchs, M. (1999): Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth. Zap. Nauchn. Sem. St.-Petersburg Odtel. Math. Inst. Steklov (POMI), 259, 46–66

    Google Scholar 

  6. Bildhauer, M., Fuchs, M. (2000): On a class of variational integrals with linear growth satisfying the condition of μ-ellipticity. Preprint Bonn University/SFB 256 no. 681

    Google Scholar 

  7. Bildhauer, M., Fuchs, M. (2002): Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions. To appear in Algebra and Analiz 14

    Google Scholar 

  8. Bildhauer, M., Fuchs, M., Mingione, G. (2001): A priori gradient bounds and local C 1,α-estimates for (double) obstacle problems under nonstandard growth conditions. Z. Anal. Anw., 20, 959–985

    MathSciNet  MATH  Google Scholar 

  9. Bombieri, E., DeGiorgi, E., Miranda, M. (1969): Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche. Arch. Rat. Mech. Anal., 32, 255–267

    Article  MathSciNet  MATH  Google Scholar 

  10. Giaquinta, M., Modica, G., Souček, J. (1979): Functionals with linear growth in the calculus of variations. Comm. Math. Univ. Carolinae, 20, 143–172

    MATH  Google Scholar 

  11. Giusti, E. (1984): Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics 80, Birkhäuser, Boston-Basel-Stuttgart

    Google Scholar 

  12. Ladyzhenskaya, O.A., Ural’tseva, N.N. (1964): Linear and Quasilinear Elliptic Equations. Nauka, Moskow (in Russian) English translation (1968): Academic Press, New York

    MATH  Google Scholar 

  13. Ladyzhenskaya, O.A., Ural’tseva, N.N. (1970): Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations. Comm. Pure Appl. Math., 23, 667–703

    Article  MathSciNet  Google Scholar 

  14. Massari, U., Miranda, M. (1984): Minimal Surfaces of Codimension One. North-Holland Mathematics Studies 91, North-Holland, Amsterdam

    Google Scholar 

  15. Miranda, M. (1967): Disequaglianze di Sobolev sulle ipersuperfici minimali. Rend. Sem. Mat. Univ. Padova, 38, 69–79

    MathSciNet  MATH  Google Scholar 

  16. Reshetnyak, Y. (1968): Weak convergence of completely additive vector functions on a set. Sibirsk. Maz. Ž., 9, 1386–1394 (in Russian)

    MATH  Google Scholar 

  17. English translation (1968): Sib. Math. J., 9, 1039–1045

    Google Scholar 

  18. Seregin, G. (1985): Variational-difference scheme for problems in the mechanics of ideally elastoplastic media. Zh. Vychisl. Mat. Fiz., 25, 237–352 (in Russian)

    MathSciNet  MATH  Google Scholar 

  19. English translation (1985): U.S.S.R Comp. Math. and Math. Phys., 25, 153–165

    Article  Google Scholar 

  20. Seregin, G.(1990): Differential properties of solutions of variational problems for functionals with linear growth. Problemy Matematicheskogo Analiza, Vypusk 11, Isazadel’stvo LGU, 51–79 (in Russian)

    Google Scholar 

  21. English translation (1993): J. Soviet Math., 64, 1256–1277

    Article  Google Scholar 

  22. Seregin, G. (1996): Twodimensional variational problems in plasticity theory. Izv. Russian Academy of Sciences, 60, 175–210 (in Russian) English translation (1996): Izvestiya Mathematics, 60, 179-216

    MathSciNet  Google Scholar 

  23. Strang, G., Temam, R. (1980): Duality and relaxations in the theory of plasticity. J. Méchanique,19, 1–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bildhauer, M., Fuchs, M. (2003). Convex Variational Problems with Linear Growth. In: Hildebrandt, S., Karcher, H. (eds) Geometric Analysis and Nonlinear Partial Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55627-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55627-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44051-2

  • Online ISBN: 978-3-642-55627-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics