Skip to main content

Strategies for Modification of the Radiation Response of the Lung

  • Chapter
Modification of Radiation Response

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 141 Accesses

Abstract

Successful clinical application of radiation therapy to malignant tumors of the thoracic region represents a major challenge. On the one hand, many of the common tumors arise in this location, for example breast cancer, lung cancer, esophageal cancer and various types of lymphomas. Radiation therapy is an effective treatment modality for these diseases and dose-response curves have been characterized over the last decades. However, evidence from a large number of clinical trials led to paradigm changes that resulted in implementation of combination treatment protocols. These may include neoadjuvant, definitive and adjuvant radiochemotherapy with a variety of active compounds as well as hormonal treatment in breast cancer. On the other hand, organ systems with restricted radiation tolerance such as the cardiovascular system, spinal cord and lungs must be taken into consideration when planning thoracic radiation therapy. It has long been recognized that the lung is among the most radiosensitive organs in the human body, especially if a larger volume has to be included in the treatment fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adawi A, Zhang Y, Baggs R et al (1998) Blockade of CD40-CD40 ligand interactions protects against radiation-induced pulmonary inflammation and fibrosis. Clin Immunol Immunopathol 89:222–230

    Article  PubMed  CAS  Google Scholar 

  • Anscher MS, Marks LB, Shafman TD et al (2001) Using plasma transforming growth factor beta-1 during radiotherapy to select patients for dose escalation. J Clin Oncol 19: 3758–3765

    PubMed  CAS  Google Scholar 

  • Antonadou D (2002) Radiotherapy or chemotherapy followed by radiotherapy with or without amifostine in locally advanced lung cancer. Semin Radiat Oncol 12[Suppl 1]: 50–58

    Article  PubMed  Google Scholar 

  • Bentzen SM, Skoczylas JZ, Overgaard M et al (1996) Radiotherapy-related lung fibrosis enhanced by tamoxifen. J Natl Cancer Inst 88:918–922

    Article  PubMed  CAS  Google Scholar 

  • Bjermer L, Franzen L, Littbrand B et al (1990) Effects of smoking and irradiated volume on inflammatory response in the lung of irradiated breast cancer patients evaluated with bronchoalveolar lavage. Cancer Res 50:2027–2030

    PubMed  CAS  Google Scholar 

  • Breuer R, Tochner Z, Conner MW et al (1992) Superoxide dismutase inhibits radiation-induced lung injury in hamsters. Lung 170:19–29

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Williams J, Ding I et al (2002) Radiation pneumonitis and early circulatory cytokine markers. Semin Radiat Oncol 12[Suppl 1]:26–33

    Article  PubMed  Google Scholar 

  • Cordes N, Plasswilm L, Bamberg M et al (2002) Ukrain, an alkaloid thiophosphoric acid derivative of Chelidonium majus L. protects human fibroblasts but not human tumour cells in vitro against ionising radiation. Int J Radiat Biol 78:17–27

    Article  PubMed  CAS  Google Scholar 

  • Dileto CL, Travis EL (1996) Fibroblast radiosensitivity in vitro and lung fibrosis in vivo: comparison between a fibrosisprone and fibrosis-resistant mouse strain. Radiat Res 146: 61–67

    Article  PubMed  CAS  Google Scholar 

  • Epperly MW, Sikora CA, DeFilippi SJ et al (2002) Pulmonary irradiation-induced expression of VCAM-1 and ICAM-1 is decreased by manganese superoxide dismutase-plasmid/ liposome (MnSOD-PL) gene therapy. Biol Blood Marrow Transplant 8:175–187

    Article  PubMed  CAS  Google Scholar 

  • Erdi YE, Rosenzweig K, Erdi AK et al (2002) Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 62:51–60

    Article  PubMed  Google Scholar 

  • Fan M, Marks LB, Lind P et al (2001) Relating radiation-induced regional lung injury to changes in pulmonary function tests. Int J Radiat Oncol Biol Phys 51:311–317

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein J, Nestle U, Walter K et al (2000) Influence of ACE-inhibitors on the risk of radiation-induced lung injury in patients with lung cancer (abstract). Radiother Oncol 56 [Suppl 1]:S130

    Google Scholar 

  • Fu XL, Huang H, Bentel G et al (2001) Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta. Int J Radiat Oncol Biol Phys 50:899–908

    Article  PubMed  CAS  Google Scholar 

  • Fuks Z, Alfieri A, Haimovitz-Friedman A (1995) Intravenous bFGF protects the lung but not mediastinal organs against radiation-induced apoptosis in vivo. Cancer J Sci Am 1: 62–72

    PubMed  CAS  Google Scholar 

  • Geara FB, Komaki R, Tucker SL et al (1998) Factors influencing the development of lung fibrosis after chemoradiation for small cell carcinoma of the lung: evidence for inherent interindividual variation. Int J Radiat Oncol Biol Phys 41: 279–286

    Article  PubMed  CAS  Google Scholar 

  • Graham MM, Evans ML, Dahlen DD et al (1990) Pharmacological alteration of the lung vascular response to radiation. Int J Radiat Oncol Biol Phys 19:329–339

    Article  PubMed  CAS  Google Scholar 

  • Graham MV, Purdy JA, Emami B et al (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329

    Article  PubMed  CAS  Google Scholar 

  • Hallahan DE, Geng L, Shyr Y (2002) Effects of intercellular adhesion molecule 1 (ICAM-1) null mutation on radiation-induced pulmonary fibrosis and respiratory insufficiency in mice. J Natl Cancer Inst 94:733–741

    Article  PubMed  CAS  Google Scholar 

  • Hanna YM, Baglan KL, Stromberg JS et al (2002) Acute and subacute toxicity associated with concurrent adjuvant radiation therapy and paclitaxel in primary breast cancer therapy. Breast J 8:149–153

    Article  PubMed  CAS  Google Scholar 

  • Harada T, Shirato H, Ogura S et al (2002) Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer 95:1720–1727

    Article  PubMed  Google Scholar 

  • Hernando ML, Marks LB, Bentel GC et al (2001) Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 51:650–659

    Article  PubMed  CAS  Google Scholar 

  • Herrmann T, Knorr A (1995) Radiogenic lung reactions. Pathogenesis — prevention — therapy (German). Strahlenther Onkol 171:490–498

    PubMed  CAS  Google Scholar 

  • Huang EY, Wang CJ, Chen HC et al (2000) Multivariate analysis of pulmonary fibrosis after electron beam irradiation for postmastectomy chest wall and regional lymphatics: evidence for non-dosimetric factors. Radiother Oncol 57: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Hurkmans CW, Cho BC, Damen E et al (2002) Reduction of cardiac and lung complication probabilities after breast irradiation using conformal radiotherapy with or without intensity modulation. Radiother Oncol 62:163–171

    Article  PubMed  Google Scholar 

  • Itoh S, Inomata T, Ogawa Y et al (1999) Serial histopathological changes in irradiated guinea pig lung receiving conventional fractionated and hyperfractionated irradiation. Radiat Med 17:227–233

    PubMed  CAS  Google Scholar 

  • Johansson S, Bjermer L, Franzen L et al (1998) Effects of ongoing smoking on the development of radiation-induced pneumonitis in breast cancer and oesophagus cancer patients. Radiother Oncol 49:41–47

    Article  PubMed  CAS  Google Scholar 

  • Jonsson OE, Bjermer L, Denekamp J et al (1999) Perivascular cell protection in vivo and increased cell survival in vitro by the antihypertensive agent carvedilol following radiation. Eur J Cancer 35:1268–1273

    Article  PubMed  CAS  Google Scholar 

  • Komaki R, Lee JS, Kaplan B et al (2002) Randomized phase III study of chemoradiation with or without amifostine for patients with favorable performance status inoperable stage II-III non-small cell lung cancer: preliminary results. Semin Radiat Oncol 12[Suppl 1]:46–49

    PubMed  CAS  Google Scholar 

  • Kong FM, Anscher MS, Sporn TA et al (2001) Loss of heterozygosity at the mannose 6-phosphate insulin-like growth factor 2 receptor (M6P/IGF2R) locus predisposes patients to radiation-induced lung injury. Int J Radiat Oncol Biol Phys 49:35–41

    Article  PubMed  CAS  Google Scholar 

  • Koukourakis MI, Romanidis K, Froudarakis M et al (2002) Concurrent administration of Docetaxel and Stealth liposomal doxorubicin with radiotherapy in non-small cell lung cancer: excellent tolerance using subcutaneous amifostine for cytoprotection. Br J Cancer 87:385–392

    Article  PubMed  CAS  Google Scholar 

  • Kwon HC, Kim SK, Chung WK et al (2000) Effect of pentoxifylline on radiation response of non-small cell lung cancer: a phase III randomized multicenter trial. Radiother Oncol 56:175–179

    Article  PubMed  CAS  Google Scholar 

  • Lind PA, Marks LB, Jamieson TA et al (2002) Predictors for pneumonitis during locoregional radiotherapy in high-risk patients with breast carcinoma treated with high-dose chemotherapy and stem-cell rescue. Cancer 94:2821–2829

    Article  PubMed  Google Scholar 

  • Lindegaard JC, Grau C (2000) Has the outlook improved for amifostine as a clinical radioprotector? Radiother Oncol 57:113–118

    Article  PubMed  CAS  Google Scholar 

  • Lockhart SP (1990) Inhaled thiol and phosphorothiol radio-protectors fail to protect the mouse lung. Radiother Oncol 19:187–191

    Article  PubMed  CAS  Google Scholar 

  • Milas L, Nishiguchi I, Hunter N et al (1992) Radiation protection against early and late effects of ionizing irradiation by the prostaglandin inhibitor indomethacin. Adv Space Res 12:265–271

    Article  PubMed  CAS  Google Scholar 

  • Molteni A, Moulder JE, Cohen EF et al (2000) Control of radiation-induced pneumopathy and lung fibrosis by angiotensin-converting enzyme inhibitors and an angiotensin II type 1 receptor blocker. Int J Radiat Biol 76: 523–532

    Article  PubMed  CAS  Google Scholar 

  • Monson JM, Stark P, Reilly JJ et al (1998) Clinical radiation pneumonitis and radiographic changes after thoracic radiation therapy for lung carcinoma. Cancer 82:842–850

    Article  PubMed  CAS  Google Scholar 

  • Muren LP, Maurstad G, Hafslund R et al (2002) Cardiac and pulmonary doses and complication probabilities in standard and conformal tangential irradiation in conservative management of breast cancer. Radiother Oncol 62: 173–183

    Article  PubMed  Google Scholar 

  • Nagata Y, Negoro Y, Aoki T et al (2002) Clinical outcomes of 3D conformal hypofractionated single high-dose radiotherapy for one or two lung tumors using a stereotactic body frame. Int J Radiat Oncol Biol Phys 52:1041–1046

    Article  PubMed  Google Scholar 

  • Nutting CM, Bedford JL, Cosgrove VP et al (2001) A comparison of conformal and intensity-modulated techniques for oesophageal radiotherapy. Radiother Oncol 61: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Oetzel D, Schraube P, Hensley F et al (1995) Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 33:455–460

    Article  PubMed  CAS  Google Scholar 

  • Olejar T, Pouckova P, Zadinova M (2000) Butylaminiperindopril decreases transforming growth factor-beta 1 messenger RNA production in lungs of C57Bl6 mice after low-dose whole-body irradiation. Drugs Exp Clin Res 26:113–117

    PubMed  CAS  Google Scholar 

  • Penney DP, Siemann DW, Rubin P et al (1994) Morphological correlates of fractionated radiation of the mouse lung: early and late effects. Int J Radiat Oncol Biol Phys 29:789–804

    Article  PubMed  CAS  Google Scholar 

  • Pignon T, Gregor A, Schaake Koning C et al (1998) Age has no impact on acute and late toxicity in curative thoracic radiotherapy. Radiother Oncol 46: 239–248

    Article  PubMed  CAS  Google Scholar 

  • Redlich CA, Gao X, Rockwell S et al (1996) IL-11 enhances survival and decreases TNF production after radiation-induced thoracic injury. J Immunol 157:1705–1710

    PubMed  CAS  Google Scholar 

  • Redlich CA, Rockwell S, Chung JS et al (1998) Vitamin A inhibits radiation-induced pneumonitis in rats. J Nutr 128: 1661–1664

    PubMed  CAS  Google Scholar 

  • Roach M 3rd, Gandara DR, Yuo HS (1995) Radiation pneumonitis following combined modality therapy for lung cancer: analysis of prognostic factors. J Clin Oncol 13: 2606–2612

    PubMed  Google Scholar 

  • Rosenzweig KE, Hanley J, Mah D et al (2000) The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 48:81–87

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig KE, Sim SE, Mychalczak B et al (2001) Elective nodal irradiation in the treatment of non-small-cell lung cancer with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 50:681–685

    Article  PubMed  CAS  Google Scholar 

  • Rube CE, Wilfert F, Uthe D et al (2002) Modulation of radiation-induced tumour necrosis factor alpha (TNF-alpha) expression in the lung tissue by pentoxifylline. Radiother Oncol 64:177–187

    Article  PubMed  CAS  Google Scholar 

  • Sasaki R, Soejima T, Matsumoto A et al (2001) Clinical significance of serum pulmonary surfactant proteins A and D for the early detection of radiation pneumonitis. Int J Radiat Oncol Biol Phys 50:301–307

    Article  PubMed  CAS  Google Scholar 

  • Sawyer TE, Bonner JA (2000) Postoperative irradiation in non-small cell lung cancer. Semin Radiat Oncol 10:280–288

    Article  PubMed  CAS  Google Scholar 

  • <Senan S, Burgers S, Samson MJ et al (2002) Can elective nodal irradiation be omitted in stage III non-small-cell lung cancer? Analysis of recurrences in a phase II study of induction chemotherapy and involved-field radiotherapy. Int J Radiat Oncol Biol Phys 54:999–1006

    Article  PubMed  Google Scholar 

  • Seppenwoolde Y, Engelsman M, De Jaeger K et al (2002) Optimizing radiation treatment plans for lung cancer using lung perfusion information. Radiother Oncol 63:165–177

    Article  PubMed  Google Scholar 

  • Tee PG, Travis EL (1995) Basic fibroblast growth factor does not protect against classical radiation pneumonitis in two strains of mice. Cancer Res 55:298–302

    PubMed  CAS  Google Scholar 

  • Theuws JC, Seppenwoolde Y, Kwa SL et al (2000) Changes in local pulmonary injury up to 48 months after irradiation for lymphoma and breast cancer. Int J Radiat Oncol Biol Phys 47:1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Van Sornsen de Koste JR, Lagerwaard FJ, Schuchhard-Schipper RH et al (2001) Dosimetric consequences of tumor mobility in radiotherapy of stage I non-small cell lung cancer — an analysis of data generated using’ slow’ CT scans. Radiother Oncol 61:93–99

    Article  Google Scholar 

  • Vanuytsel LJ, Vansteenkiste JF, Stroobants SG et al (2000) The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55:317–324

    Article  PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Marks LB, Anscher MS (2000) The physical parameters and molecular events associated with radiation-induced lung toxicity. Semin Radiat Oncol 10: 296–307

    Article  PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Feng QF, Rabbani ZN et al (2002a) Assessment of the protective effect of amifostine on radiation-induced pulmonary toxicity. Exp Lung Res 28:577–590

    Article  PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Feng QF, Rabbani ZN et al (2002b) Radioprotection of lungs by amifostine is associated with reduction in profibrogenic cytokine activity. Radiat Res 157:656–660

    Article  PubMed  CAS  Google Scholar 

  • Wang LW, Fu XL, Clough R et al (2000) Can angiotensin-converting enzyme inhibitors protect against symptomatic radiation pneumonitis? Radiat Res 153:405–410

    Article  PubMed  CAS  Google Scholar 

  • Wang JY, Chen KY, Wang JT et al (2002) Outcome and prognostic factors for patients with non-small-cell lung cancer and severe radiation pneumonitis. Int J Radiat Oncol Biol Phys 54:735–741

    Article  PubMed  Google Scholar 

  • Ward WF, Kim YT, Molteni A et al (1992) Pentoxifylline does not spare acute radiation reactions in rat lung and skin. Radiat Res 129:107–111

    Article  PubMed  CAS  Google Scholar 

  • Ward HE, Kemsley L, Davies L et al (1993) The effect of steroids on radiation-induced lung disease in the rat. Radiat Res 136:22–28

    Article  PubMed  CAS  Google Scholar 

  • Wennberg B, Gagliardi G, Sundbom L et al (2002) Early response of lung in breast cancer irradiation: radiologic density changes measured by CT and symptomatic radiation pneumonitis. Int J Radiat Oncol Biol Phys 52: 1196–1206

    Article  PubMed  Google Scholar 

  • Wulf J, Hadinger U, Oppitz U et al (2001) Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol 177:645–655

    Article  PubMed  CAS  Google Scholar 

  • Yorke ED, Jackson A, Rosenzweig KE et al (2002a) Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 54:329–339

    Article  PubMed  Google Scholar 

  • Yorke ED, Wang L, Rosenzweig KE et al (2002b) Evaluation of deep inspiration breath-hold lung treatment plans with Monte Carlo dose calculation. Int J Radiat Oncol Biol Phys 53:1058–1070

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nieder, C. (2003). Strategies for Modification of the Radiation Response of the Lung. In: Nieder, C., Milas, L., Ang, K.K. (eds) Modification of Radiation Response. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55613-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55613-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62670-8

  • Online ISBN: 978-3-642-55613-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics