Genetic Code Evolution in the RNA World and Beyond

  • Robin D. Knight
Part of the Natural Computing Series book series (NCS)


Although the translation apparatus presumably arose in an RNA world, subsequent modifications obscure its origins. The genetic code, fixed in the Last Universal Ancestor may contain clues about the types of chemical interaction that led to early correspondences between RNA and protein. The extent to which contemporary translation reflects these primordial influences depends on the processes that have shaped the genetic code since its inception: stereochemical interaction between amino acids and RNA, historical constraints ensuring continuity between successive codes, and optimization to minimize the effects of errors caused by translation and mutation. This chapter explains how these processes, typically presented as mutually antagonistic, may actually be viewed as complementary on different timescales, and I suggest how the “first” codons could have been established in the context of an RNA world.


Genetic Code Prebiotic Synthesis Murchison Meteorite Canonical Genetic Code Universal Ancestor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szathmáry, E. & Maynard Smith, J. (1995). The major evolutionary transitions. Nature 374:227–232.CrossRefGoogle Scholar
  2. 2.
    Miller, S.L. (1953). Production of amino acids under possible primitive earth conditions. Science 117:528–529.CrossRefGoogle Scholar
  3. 3.
    Miller, S.L. (1987). Which organic compounds could have occurred on the prebiotic earth? Cold Spring Harbor Symposia on Quantitative Biology LII: 17–27.CrossRefGoogle Scholar
  4. 4.
    Gánti, T. (1975). Organisation of chemical reactions into dividing and metabolizing units: the chemotons. Biosystems 7:189–195.CrossRefGoogle Scholar
  5. 5.
    Crick, F.H.C. (1968). The origin of the genetic code. J. Mol. Biol. 38:367–379.CrossRefGoogle Scholar
  6. 6.
    Knight, R.D., Freeland, S.J. & Landweber, L.F. (1999). Selection, history, and chemistry: the three faces of the genetic code. TiBS, 24:241–247.Google Scholar
  7. 7.
    Dunnill, P. (1966). Triplet nucleotide-amino acid pairing: A stereochemical basis for the division between protein and nonprotein amino acids. Nature 210:1267–1268.CrossRefGoogle Scholar
  8. 8.
    Pelc, S.R. & Welton, M.G.E. (1966). Stereochemical relationship between coding triplets and amino-acids. Nature 209:868–872.CrossRefGoogle Scholar
  9. 9.
    Gilbert, W. (1986). The RNA world. Nature 319:618.CrossRefGoogle Scholar
  10. 10.
    Yarus, M. (1991). An RNA-amino acid complex and the origin of the genetic code. New Biologist 3:183–189.Google Scholar
  11. 11.
    Yarus, M. (1998). Amino acids as RNA ligands: A direct-RNA-template theory for the code’s origin. J. Mol. Evol. 47:109–117.CrossRefGoogle Scholar
  12. 12.
    Woese, C.R. (1967). The Genetic Code: The Molecular Basis for Genetic Expression. New York: Harper & Row.Google Scholar
  13. 13.
    Wong, J.T.-F. (1975). A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA 72:1909–1912.CrossRefGoogle Scholar
  14. 14.
    Dillon, L.S. (1975). The origins of the genetic code. The Botanical Review 39:301–345.CrossRefGoogle Scholar
  15. 15.
    Miseta, A. (1989). The role of protein associated amino acid precursor molecules in the organization of genetic codons. Physiol. Chem. Phys. Med. NMR 21:237–242.Google Scholar
  16. 16.
    Taylor, F.J.R. & Coates, D. (1989). The code within the codons. Biosystems 22:177–187.CrossRefGoogle Scholar
  17. 17.
    Di Giulio, M. (1989). Some aspects of the organization and evolution of the genetic code. J. Mol. Evol. 29:191–201.CrossRefGoogle Scholar
  18. 18.
    Di Giulio, M. (1998). The historical factor: the biosynthetic relationships between amino acids and their physiochemical properties in the origin of the genetic code. J. Mol. Evol. 46:615–621.CrossRefGoogle Scholar
  19. 19.
    Sonneborn, T.M. (1965). Degeneracy of the genetic code: extent, nature, and genetic implications. In Evolving Genes and Proteins, V. Bryson and H.J. Vogel, eds. New York: Academic Press, pp. 377–297.Google Scholar
  20. 20.
    Zuckerkandl, E. & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins, V. Bryson and H.J. Vogel, eds. New York: Academic Press.Google Scholar
  21. 21.
    Ardell, D.H. (1998). On error minimization in a sequential origin of the standard genetic code. J. Mol. Evol. 47:1–13.CrossRefGoogle Scholar
  22. 22.
    Haig, D. & Hurst, L.D. (1991). A quantitative measure of error minimization in the genetic code. J. Mol. Evol. 33:412–417.CrossRefGoogle Scholar
  23. 23.
    Freeland, S.J. & Hurst, L.D. (1998). The genetic code is one in a million. J. Mol. Evol. 47:238–48.CrossRefGoogle Scholar
  24. 24.
    Freeland, S.J. & Hurst, L.D. (1998). Load minimization of the code: history does not explain the pattern. Proc. Roy. Soc. Lond. B 265:1–9.CrossRefGoogle Scholar
  25. 25.
    Ring, D., Wolman, Y., Friedmann, N. & Miller, S.L. (1972). Prebiotic synthesis of hydrophobic and protein amino acids. Proc. Natl. Acad. Sci. USA 69:765–768.CrossRefGoogle Scholar
  26. 26.
    Wolman, Y., Haverland, W.J. & Miller, S.L. (1972). Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proc. Natl. Acad. Sci. USA 69:809–811.CrossRefGoogle Scholar
  27. 27.
    Weber, A.L. & Miller, S.L. (1981). Reasons for the occurrence of the twenty coded protein amino acids. J. Mol. Evol. 17:273–284.CrossRefGoogle Scholar
  28. 28.
    Kvenvolden, K., Lawless, J.G., et al. (1970). Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926.CrossRefGoogle Scholar
  29. 29.
    Kvenvolden, K.A., Lawless, J.G. & Ponnamperuma, C. (1971). Nonprotein amino acids in the Murchison meteorite. Proc. Natl. Acad. Sci. USA 68:486–490.CrossRefGoogle Scholar
  30. 30.
    Crothers, D.M. (1982). Nucleic acid aggregation geometry and the possible evolutionary origin of ribosomes and the genetic code. J. Mol. Biol. 162:379–391.CrossRefGoogle Scholar
  31. 31.
    Trifonov, E. & Bettecken, T. (1997). Sequence fossils, triplet expansion, and reconstruction of earliest codons. GENE 205:1–6.CrossRefGoogle Scholar
  32. 32.
    Lehmann, U. (1985). Chromatographic separation as selection process for prebiotic evolution and the origin of the genetic code. Biosystems 17:193–208.CrossRefGoogle Scholar
  33. 33.
    Nagyvary, J. & Fendler, J.H. (1974). Origin of the genetic code: a physical-chemical model of primitive codon assignments. Orig. Life 5:357–362.Google Scholar
  34. 34.
    Woese, C.R., Dugre, D.H., Dugre, S.A., Kondo, M. & Saxinger, W.C. (1966). On the fundamental nature and evolution of the genetic code. Cold Spring Harb. Symp. Quant. Biol. 31:723–736.CrossRefGoogle Scholar
  35. 35.
    Woese, C.R., Dugre, D.H., Saxinger, W.C. & Dugre, S.A. (1966). The molecular basis for the genetic code. Proc. Natl. Acad. Sci. USA 55:966–974.CrossRefGoogle Scholar
  36. 36.
    Weber, A.L. & Lacey, J.C., Jr. (1978). Genetic code correlations: amino acids and their anticodon nucleotides. J. Mol. Evol. 11:199–210.CrossRefGoogle Scholar
  37. 37.
    Jungck, J.R. (1978). The genetic code as a periodic table. J. Mol. Evol. 11:211–224.CrossRefGoogle Scholar
  38. 38.
    Lacey, J.C., Jr. & Pruitt, K.M. (1969). Origin of the genetic code. Nature 223:799–804.CrossRefGoogle Scholar
  39. 39.
    Saxinger, C. & Ponnamperuma, C. (1971). Experimental investigation on the origin of the genetic code. J. Mol. Evol. 1:63–73.CrossRefGoogle Scholar
  40. 40.
    Raszka, M. & Mandel, M. (1972). Is there a physical chemical basis for the present genetic code? J. Mol. Evol. 2:38–43.CrossRefGoogle Scholar
  41. 41.
    Saxinger, C. & Ponnamperuma, C. (1974). Interactions between amino acids and nucleotides in the prebiotic milieu. Orig. Life 5:189–200.CrossRefGoogle Scholar
  42. 42.
    Lacey, J.C., Jr., Weber, A.L. & White, W.E., Jr. (1975). A model for the coevolution of the genetic code and the process of protein synthesis: review and assessment. Orig. Life 6:273–283.CrossRefGoogle Scholar
  43. 43.
    Reuben, J. & Polk, F.E. (1980). Nucleotide-amino acid interactions and their relation to the genetic code. J. Mol. Evol. 15:103–112.CrossRefGoogle Scholar
  44. 44.
    Podder, S.K. & Basu, H.S. (1984). Specificity of protein-nucleic acid interaction and the biochemical evolution. Orig. Life 14:477–484.CrossRefGoogle Scholar
  45. 45.
    Porschke, D. (1985). Differential effect of amino acid residues on the stability of double helices formed from polyribonucleotides and its possible relation to the evolution of the genetic code. J. Mol. Evol. 21:192–198.CrossRefGoogle Scholar
  46. 46.
    Lacey, J.C., Jr., Wickramasinghe, N.S.M.D., Cook, G.W. & Anderson, G. (1993). Couplings of character and of chirality in the origin of the genetic system. J. Mol. Evol. 37:233–239.CrossRefGoogle Scholar
  47. 47.
    Lacey, J.C., Jr. & Mullins, D.W., Jr. (1983). Experimental studies related to the origin of the genetic code and the process of protein synthesis—a review. Orig. Life 13:3–42.CrossRefGoogle Scholar
  48. 48.
    Lacey, J.C., Jr. (1992). Experimental studies on the origin of the genetic code and the process of protein synthesis: a review update. Orig. Life Evol. Biosph. 22:243–275.CrossRefGoogle Scholar
  49. 49.
    Szathmary, E. (1993). Coding coenzyme handles: a hypothesis for the origin of the genetic code. Proc. Natl. Acad. Sci. USA 90:9916–9920.CrossRefGoogle Scholar
  50. 50.
    Maizels, N. & Weiner, A.M. (1987). Peptide-specific ribosomes, genomic tags, and the origin of the genetic code. Cold Spring Harbor Symp. Quant. Biol. LII:743–749.CrossRefGoogle Scholar
  51. 51.
    Maizels, N. & Weiner, A.M. (1993). The genomic tag hypothesis: modern viruses as molecular fossils of ancient strategies for genomic replication. In The RNA World, R.F. Gesteland and J.F. Atkins, eds. New York: Cold Spring Harbor Laboratory Press, pp. 577–602.Google Scholar
  52. 52.
    Ralph, R.K. (1968). A suggestion on the origin of the genetic code. Biochem. Biophys. Res. Comm. 33:213–218.CrossRefGoogle Scholar
  53. 53.
    Hopfield, J.J. (1978). Origin of the genetic code: a testable hypothesis based on tRNA structure, sequence, and kinetic proofreading. Proc. Natl. Acad. Sci. USA 75:4334–4338.CrossRefGoogle Scholar
  54. 54.
    Root-Bernstein, R.S. (1982). Amino acid pairing. J. Theor. Bio. 94:885–894.MathSciNetCrossRefGoogle Scholar
  55. 55.
    Root-Bernstein, R.S. (1982). On the origin of the genetic code. J. Theor. Bio. 94:895–904.MathSciNetCrossRefGoogle Scholar
  56. 56.
    Shimizu, M. (1982). Molecular basis for the genetic code. J. Mol. Evol. 18:297–303.MathSciNetCrossRefGoogle Scholar
  57. 57.
    Hendry, L.B. & Whitham, F.H. (1979). Stereochemical recognition in nucleic acid-amino acid interactions and its implications in biological coding: a model approach. Perspect. Biol. Med. 22:333–345.Google Scholar
  58. 58.
    Alberti, S. (1997). The origin of the genetic code and protein synthesis. J. Mol. Evol. 45:352–358.CrossRefGoogle Scholar
  59. 59.
    Keeling, P.J. & Doolittle, W.F. (1997). Widespread and ancient distribution of a noncanonical genetic code in diplomonads. Mol. Biol. Evol. 14(9):895–901.CrossRefGoogle Scholar
  60. 60.
    Lagerkvist, U. (1978). “Two out of three”: an alternative method for codon reading. Proc. Natl. Acad. Sci. USA 75:1759–1762.CrossRefGoogle Scholar
  61. 61.
    Lagerkvist, U. (1980). Codon misreading: a restriction operative in the evolution of the genetic code. American Scientist 68:192–198.Google Scholar
  62. 62.
    Knight, R.D. & Landweber, L.F. (1998). Rhyme or reason: RNA-arginine interactions and the genetic code. Chem. Biol. 5(9):R215–20.CrossRefGoogle Scholar
  63. 63.
    Ellington, A.D. & Szostak, J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822.CrossRefGoogle Scholar
  64. 64.
    Robertson, D.L. & Joyce, G.F. (1990). Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468.CrossRefGoogle Scholar
  65. 65.
    Tuerk, C. & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.CrossRefGoogle Scholar
  66. 66.
    Landweber, L.F., Simon, P.J. & Wagner, T.A. (1998). Ribozyme engineering and early evolution. BioScience 48:94–103.CrossRefGoogle Scholar
  67. 67.
    Famulok, M. & Szostak, J.W. (1992). Stereospecific recognition of tryptophan agarose by in vitro selected RNA. J. Am. Chem. Soc. 114:3990–3991.CrossRefGoogle Scholar
  68. 68.
    Majerfeld, I. & Yarus, M. (1994). An RNA pocket for an aliphatic hydrophobe. Nature Struct. Biol. 1:287–292.CrossRefGoogle Scholar
  69. 69.
    Zinnen, S. & Yarus, M. (1995). An RNA pocket for the planar aromatic side chains of phenylalanine and tryptophane. Nucleic Acids Symp. Ser. 33:148–151.Google Scholar
  70. 70.
    Famulok, M. (1994). Molecular recognition of amino acids by RNA-aptamers: an L-citrulline binding RNA motif and its evolution into an L-arginine binder. J. Am. Chem. Soc. 116:1698–1706.CrossRefGoogle Scholar
  71. 71.
    Majerfeld, I. & Yarus, M. (1998). Isoleucine: RNA sites with essential coding sequences. RNA 4:471–478.Google Scholar
  72. 72.
    Burgstaller, P., Kochoyan, M. & Famulok, M. (1995). Structural probing and damage selection of citrulline- and arginine-specific RNA aptamers identify base positions required for binding. Nucleic Acids Res. 23:4769–4776.CrossRefGoogle Scholar
  73. 73.
    Connell, G.J., Illangsekare, M. & Yarus, M. (1993). Three small ribooligonucleotides with specific arginine sites. Biochemistry 32:5497–5502.CrossRefGoogle Scholar
  74. 74.
    Connell, G.J. & Yarus, M. (1994). RNAs with dual specificity and dual RNAs with similar specificity. Science 264:1137–1141.CrossRefGoogle Scholar
  75. 75.
    Tao, J. & Frankel, A.D. (1996). Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochemistry 35:2229–2238.CrossRefGoogle Scholar
  76. 76.
    Yang, Y., Kochoyan, M., Burgstaller, P., Westhof, E. & Famulok, F. (1996). Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science 272:1343–1346.CrossRefGoogle Scholar
  77. 77.
    Tao, J. & Frankel, A. (1992). Specific binding of arginine to TAR RNA. Proc. Natl. Acad. Sci. 89:2723–2726.CrossRefGoogle Scholar
  78. 78.
    Yarus, M. (1989). Specificity of arginine binding by the tetrahymena intron. Biochemistry 28:980–988.CrossRefGoogle Scholar
  79. 79.
    Maizels, N. & Weiner, A.M. (1994). Phylogeny from function: Evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc. Natl. Acad. Sci. USA 91:6729–6734.CrossRefGoogle Scholar
  80. 80.
    Jay, D.G. & Gilbert, W. (1987). Basic protein enhances the incorporation of DNA into lipid vesicles: model for the formation of primordial cells. Proc. Natl. Acad. Sci. USA 84:1978–1980.CrossRefGoogle Scholar
  81. 81.
    Herschlag, D., Khosla, M., Tsuchihashi, Z. & Karpel, R.L. (1994). An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. Embo J. 13:2913–24.Google Scholar
  82. 82.
    Alff-Steinberger, C. (1969). The genetic code and error transmission. Proc. Natl. Acad. Sci. USA 64:584–591.CrossRefGoogle Scholar
  83. 83.
    Osawa, S. (1995). Evolution of the Genetic Code. Oxford: Oxford University Press.Google Scholar
  84. 84.
    Tourancheau, A.B., Tsao, N., Klobutcher, L.A., Pearlman, R.E. & Adoutte, A. (1995). Genetic code deviations in the ciliates: evidence for multiple and independent events. EMBO J. 14:3262–3267.Google Scholar
  85. 85.
    Hayashi-Ishimaru, Y., Ehara, M., Inagaki, Y. & Ohama, T. (1997). A deviant mitochondrial genetic code in prymnesiophytes (yellow-algae): UGA codon for tryptophan. Curr. Genet. 32:296–299.CrossRefGoogle Scholar
  86. 86.
    Hayashi-Ishimaru, Y., Ohama, T., Kawatsu, Y., Nakamura, K. & Osawa, S. (1996). UAG is a sense codon in several chlorophyceas mitochondria. Curr. Genet. 30:29–33.CrossRefGoogle Scholar
  87. 87.
    Knight, R.D. & Landweber, L.F. (2000). Guilt by Association: The Arginine Case Revisited. RNA. 6:499–510.CrossRefGoogle Scholar
  88. 88.
    Knight, R.D., Freeland, S.J. & Landweber, L.F. (2001). Rewiring the Keyboard: Evolvability of the Genetic Code. Nature Reviews Genetics. 2:49–58.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Robin D. Knight

There are no affiliations available

Personalised recommendations