Skip to main content

Efficacy and Mechanism of Action of 1α-hydroxy-24-ethyl-Cholecalciferol (1α[OH]D5) in Breast Cancer Prevention and Therapy

  • Conference paper
Vitamin D Analogs in Cancer Prevention and Therapy

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 164))

Abstract

It is now well established that the active metabolite of vitamin D3, 1α,25(OH)2D3, regulates cell growth and differentiation in various in vitrocancer models. However, its clinical use is precluded due to its hypercalcemicactivity in vivo. Hence, several less calcemic vitamin D analogs have been synthesizedand evaluated for their chemopreventive and therapeutic efficacy inexperimental carcinogenesis models. A novel analog of vitamin D3, 1α-hydroxy-24-ethyl-cholecalciferol (1α[OH]D5), has currently been under investigationin our laboratory for its application in breast cancer prevention andtherapy. 1α(OH)D5 had been shown to inhibit development of estrogen-andprogesterone-dependent ductal lesions as well as steroid hormone-independentalveolar lesions in a mammary gland organ culture (MMOC) model. Moreover, the inhibitory effect was more significant if 1α(OH)D5 was presentduring the promotional phase of the lesion development. The growth inhibitoryeffect of 1α(OH)D5 has also been manifested in several breast cancer celllines, including BT-474 and MCF-7. Breast cancer cell lines that responded to1a(OH)D5 treatment were vitamin D receptor positive (VDR+). Vitamin D receptor-negative (VDR_) cell lines, such as MDA-MB-231 and MDA-MB-435, did not show growth inhibition upon incubation with 1α(OH)D5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asamoto M, Cohen SM (1994) Prohibitin gene is overexpressed but not mutated in rat bladder carcinomas and cell lines. Cancer Lett 83:201–207

    Article  PubMed  CAS  Google Scholar 

  • Atanaskova N, Keshamouni VG, Krueger JS, Schwartz JA, Miller F, Reddy KB (2002) MAP kinase estrogen receptor cross-talk enhances estrogen-mediated signaling and tumor growth but does not confer tamoxifen resistance. Oncogene 21:4000–4008

    Article  PubMed  CAS  Google Scholar 

  • Berggren M, Gallegos A, Gasdaska JR, Gasdaska PY, Warneke J, Powis G (1996) Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res 16:3459–3466

    PubMed  CAS  Google Scholar 

  • Bretherton-Watt D, Given-Wilson R, Mansi JL, Thomas V, Carter N, Colston KW (2001) Vitamin D receptor gene polymorphisms are associated with breast cancer risk in a UK Caucasian population. Br J Cancer 85:171–175

    Article  PubMed  CAS  Google Scholar 

  • Buras RR, Schumaker LM, Davoodi F, Brenner RV, Shabahang M, Nauta RJ, Evans SR (1994) Vitamin D receptors in breast cancer cells. Breast Cancer Res Treat 31:191–202

    Article  PubMed  CAS  Google Scholar 

  • Carpenter KJ, Zhao L (1999) Forgotten mysteries in the early history of vitamin D. J Nutr 129:923–927

    PubMed  CAS  Google Scholar 

  • Christakos S (1994) Vitamin D in breast cancer. Adv Exp Med Biol 364:115–118

    Article  PubMed  CAS  Google Scholar 

  • Coates PJ, Nenutil R, McGregor A, Picksley SM, Crouch DH, Hall PA, Wright EG (2001) Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Exp Cell Res 265:262–273

    Article  PubMed  CAS  Google Scholar 

  • Demirpence E, Balaguer P, Trousse F, Nicolas JC, Pons M, Gagne D (1994) Antiestrogenic effects of all-trans-retinoic acid and 1a,25-dihydroxyvitamin D3 in breast cancer cells occur at the estrogen response element level but through different molecular mechanisms. Cancer Res 54:1458–1464

    PubMed  CAS  Google Scholar 

  • Edwards BK, Howe HL, Ries LA, Thun MJ, Rosenberg HM, Yancik R, Wingo PA, Jemal A,Feigal EG (2002) Annual Report to the Nation on the status of cancer, 1973–1999, featuring implications of age and aging on U.S. cancer burden. Cancer 94:2766–2792

    Google Scholar 

  • Eisman JA, Martin TJ, MacIntyre I (1980) Presence of 1a,25-dihydroxy-vitamin D3 receptor in normal and abnormal breast tissue. Prog Biochem Pharmacol 17:143–150

    PubMed  CAS  Google Scholar 

  • Falkenstein E, Norman AW, Wehling M (2000) Mannheim classification of non-genomically initiated rapid steroid actions. J Clin Endocrinol Metab 85:2072–2075

    Article  PubMed  CAS  Google Scholar 

  • Freedman DM, Dosemeci M, McGlynn K (2002) Sunlight and mortality from breast, ovarian, colon, prostate, and non-melanoma skin cancer: a composite death certificate based case-control study. Occup Environ Med 59:257–262

    Article  PubMed  CAS  Google Scholar 

  • Friedrich M, Rafi L, Tilgen W, Schmidt W, Reichrat J (1998) Expression of 1,25-dihydroxy vitamin D3 receptor in breast carcinoma. J Histochem Cytochem 46:1335–1337

    Article  PubMed  CAS  Google Scholar 

  • Gallegos A, Gasdaska JR, Taylor CW, Paine-Murrieta GD, Goodman D, Gasdaska PY,Berggren M, Briehl MM, Powis G (1996) Transfection with human thioredoxin increases cell proliferation and a dominant-negative mutant thioredoxin reverses the transformed phenotype of human breast cancer cells. Cancer Res 56:5765–5770

    CAS  Google Scholar 

  • Garland FC, Garland CF, Gorham ED, Young JF (1990) Geographic variation in breast cancer mortality in the United States: a hypothesis involving exposure to solar radiation. Prev Med 19:614–622

    Article  PubMed  CAS  Google Scholar 

  • Gorham ED, Garland FC, Garland CF (1990) Sunlight and breast cancer incidence in the USSR. Int J Epidemiol 19:820–824

    Article  PubMed  CAS  Google Scholar 

  • Guyton KZ, Kensler TW, Posner GH (2001) Cancer chemoprevention using natural vitamin D and synthetic analogs. Annu Rev Pharmacol Toxicol 41:421–442

    Article  PubMed  CAS  Google Scholar 

  • Haussler MR (1986) Vitamin D receptors: nature and function. Annu Rev Nutr 6:527–562

    Article  PubMed  CAS  Google Scholar 

  • Hisatake J, OõKelly J, Uskokovic MR, Tomoyasu S, Koeffler HP (2001) Novel vitamin D3 analog 21–3-methyl-3-hydroxy-butyl-19-nor D3, that modulates cell growth, differentiation,apoptosis, cell cycle, and induction of PTEN in leukemic cells. Blood 97:2427–2433

    Article  PubMed  CAS  Google Scholar 

  • Howe HL, Wingo PA, Thun MJ, Ries LA, Rosenberg HM, Feigal EG, Edwards BK (2001) Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J Natl Cancer Inst 93:824–842

    Article  PubMed  CAS  Google Scholar 

  • James SY, Williams MA, Kessey SM, Newland AC, Colston KW (1997) The role of vitamin D derivatives and retinoids in the differentiation of human leukemia cells. Biochem Pharmacol 54:625–634

    Article  PubMed  CAS  Google Scholar 

  • John EM, Schwartz GG, Dreon DM, Koo J (1999) Vitamin D and breast cancer risk: the NHANES I Epidemiologic follow-up study, 1971–1975 to 1992. National Health and Nutrition Examination Survey. Cancer Epidemiol Biomarkers Prev 8:399–406

    PubMed  CAS  Google Scholar 

  • Jones G, Struguell SA, DeLuca HF (1998) Current understanding of the molecular actions of vitamin D. Physiol Rev 78:1193–1231

    PubMed  CAS  Google Scholar 

  • Jupe ER, Liu XT, Kiehlbauch JL, McClung JK, DellõOrco RT (1996) Prohibitin in breast cancer cell lines: loss of antiproliferative activity is linked to 30 untranslated region mutations.Cell Growth Differ 7:871–878

    PubMed  CAS  Google Scholar 

  • Kelloff GJ, Boone CW, Crowell JA, Steele VE (1996) New agents for cancer chemoprevention.J Cell Biochem 26 [Suppl]:1–28

    CAS  Google Scholar 

  • Kirkpatrick DL, Watson S, Kunkel M, Fletcher S, Ulhaq S, Powis G (1999) Parallel syntheses of disulfide inhibitors of the thioredoxin redox system as potential antitumor agents. Anticancer Drug Des 14:421–432

    PubMed  CAS  Google Scholar 

  • Lazzaro G, Mehta RR, Shilkaitis A, Das-Gupta TK, Mehta RG (1997) Transformation of humanbreast epithelial cells by DMBA, but not MNU, is accompanied by up-regulation of basic fibroblast growth factor. Oncol Rep 4:1175–1180

    PubMed  CAS  Google Scholar 

  • Lazzaro G, Agadir A, Qing W, Poria M, Mehta RR, Moriarty RM, Das-Gupta TK, Zhang XK,Mehta RG (2000) Induction of differentiation by 1a(OH)D5 in T-47D breast cancer cellsand its interaction with vitamin D receptors. Eur J Cancer 36:780–786

    CAS  Google Scholar 

  • Lundin AC, Soderkvist P, Eriksson B, Bergman-Jungestrom M, Wingren S (1999) Association of breast cancer progression with a vitamin D receptor gene polymorphism. South-East Sweden Breast Cancer Group. Cancer Res 59:2332–2334

    PubMed  CAS  Google Scholar 

  • Mallon E, Osin P, Nasiri N, Blain I, Howard B, Gusterson B (2000) The basic pathology of human breast cancer. J Mammary Gland Biol Neoplasia. 5:139–163

    Article  PubMed  CAS  Google Scholar 

  • Matsutani Y, Yamauchi A, Takahashi R, Ueno M, Yoshikawa K, Honda K, Nakamura H, Kato H, Kodama H, Inamoto T, Yodoi J, Yamaoka Y (2001) Inverse correlation of thioredoxin expression with estrogen receptor-and p53-dependent tumor growth in breast cancer tissues.Clin Cancer Res 7:3430–436

    Google Scholar 

  • Mehta RG, Mehta RR (2002) Vitamin D and cancer. J Nutr Biochem 13:252–264

    Article  PubMed  CAS  Google Scholar 

  • Mehta RR, Bratescu L, Graves JM, Hart GD, Shilkaitis A, Green A, Beattie CW, Das Gupta TK (1992) Human breast carcinoma cell lines: ultrastructural, genotypic, and immunocytochemical characterization. Anticancer Res 12:683–692

    PubMed  CAS  Google Scholar 

  • Mehta RG, Moriarty RM, Mehta RR, Penmasta R, Lazzaro G, Constantinou A, Guo L (1997a) Prevention of preneoplastic mammary lesion development by a novel vitamin D analog,1a(OH)D5. J Natl Cancer Inst 89:212–218

    Article  PubMed  CAS  Google Scholar 

  • Mehta RG, Hawthorne ME, Steele VE (1997b) Induction and prevention of carcinogen-induced precancerous lesions in mouse mammary gland organ culture. Methods Cell Sci 19:19–24

    Article  Google Scholar 

  • Mehta RG, Hawthorne ME, Uselding L, Albinescu D, Moriarty R, Christov K, Mehta RR (2000a) Prevention of MNU-induced mammary carcinogenesis in rats by 1a(OH)D5. J Natl Cancer Inst 92:1836–1840

    Article  PubMed  CAS  Google Scholar 

  • Mehta RR, Bratescu L, Graves JM, Green A, Mehta RG (2000b) Differentiation of human breast carcinoma cells by a novel vitamin D analog. Int J Oncol 16:65–73

    PubMed  CAS  Google Scholar 

  • Mehta RG, Hussain EA, Mehta RR, Das-Gupta TK (2003) Chemoprevention of mammary carcinogenesis by 1a-hydroxy vitamin D5, a synthetic analog of vitamin D. Mut Res (in press)

    Google Scholar 

  • Napoli JL, Fivizzani MA, Schnoes HK, DeLuca HF (1979) Synthesis of vitamin D5: its biologicalactivity relative to vitamin D3 and D2. Arch Biochem Biophys 197:119–125

    Article  PubMed  CAS  Google Scholar 

  • Narvaez CJ, Zinser G, Welsh J (2001) Functions of 1alpha,25-dihydroxyvitamin D3 in mammary gland: from normal development to breast cancer. Steroids 66:301–308

    Article  PubMed  CAS  Google Scholar 

  • Peto R, Boreham J, Clarke M, Davies C, Beral V (2000) UK and USA breast cancer deaths down 25% in year 2000 at ages 20–69 years. Lancet 355:1822

    Article  PubMed  CAS  Google Scholar 

  • Pike JW (1991) Vitamin D3 receptors: structure and function in transcription. Annu Rev Nutr 11:189–216

    Article  PubMed  CAS  Google Scholar 

  • Polek TC, Weigel NL (2002) Vitamin D and prostate cancer.J Androl 23:9–17

    PubMed  CAS  Google Scholar 

  • Rachez C, Freedman LP (2000) Mechanism of gene regulation by VDR: a network of coactivator interactions. Genes 246:9–21

    CAS  Google Scholar 

  • Roder JD, Stair E (1999) An overview of cholecalciferol toxicosis. Vet Human Toxicol 4:344–348

    Google Scholar 

  • Rosenbaum-Smith SM, Osborne MP (2000) Breast cancer chemoprevention. Am J Surg 180:249–251

    Article  PubMed  CAS  Google Scholar 

  • Stoica A, Saceda M, Fakhro A, Solomon HB, Fenster BD, Martin MB (1999) Regulation of estrogen receptor-alpha gene expression by 1a,25-dihydroxyvitamin D3 in MCF-7 cells. J Cell Biochem 75:640–651

    Article  PubMed  CAS  Google Scholar 

  • Storm FK, Mahvi DM, Gilchrist KW (1996) Heat shock protein 27 overexpression in breast cancer lymph node metastasis. Ann Surg Oncol 3:570–573

    Article  PubMed  CAS  Google Scholar 

  • Swami S, Krishnan AV, Feldman D (2000) 1a,25-dihydroxy-vitamin D3 down-regulates estrogen receptor abundance and suppresses estrogen actions in MCF-7 human breast cancer cells. Clin Cancer Res 6:3371–3379

    PubMed  CAS  Google Scholar 

  • Twentyman PR, Luscombe M (1987) A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 56:279–285

    Article  PubMed  CAS  Google Scholar 

  • Vieth R (1999) Vitamin D supplementation, 25(OH)D3 concentration and safety. Am J Clin Nutr 69:842–856

    PubMed  CAS  Google Scholar 

  • Vindelov LL, Christensen IJ, Nissen NI (1983) A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3:323–327

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Nath N, Fusaro G, Chellappan S (1999) Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals. Mol Cell Biol 19:7447–7460

    PubMed  CAS  Google Scholar 

  • Welsh J, VanWeelden K, Flanagan L, Byrne I, Nolan E, Narvaez CJ (1998) The role of vitamin D3 and anti-estrogens in modulating apoptosis of breast cancer cells and tumors. Subcell Biochem 30:245–270

    PubMed  CAS  Google Scholar 

  • Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A, Beauheim C, Harvey S, Ethier SP, Johnson PH (2001) Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 61:5168–5178

    PubMed  CAS  Google Scholar 

  • Zinser G, Packman K, Welsh J (2002) Vitamin D3 receptor ablation alters mammary gland morphogenesis. Development 129:3067–3076

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hussain, E.A., Mehta, R.R., Ray, R., Das Gupta, T.K., Mehta, R.G. (2003). Efficacy and Mechanism of Action of 1α-hydroxy-24-ethyl-Cholecalciferol (1α[OH]D5) in Breast Cancer Prevention and Therapy. In: Reichrath, J., Tilgen, W., Friedrich, M. (eds) Vitamin D Analogs in Cancer Prevention and Therapy. Recent Results in Cancer Research, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55580-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55580-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62435-3

  • Online ISBN: 978-3-642-55580-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics