Skip to main content

On the Reflexivity of Point Sets

  • Chapter
Book cover Discrete and Computational Geometry

Abstract

We introduce a new measure for planar point sets S that captures a combinatorial distance that S is from being a convex set: The reflexivity p(S) of S is given by the smallest number of reflex vertices in a simple polygonalization of S. We prove combinatorial bounds on the reflexivity of point sets and study some closely related quantities, including the convex cover number k c (S) of a planar point set, which is the smallest number of convex chains that cover S, and the convex partition number k p (S), which is given by the smallest number of convex chains with pairwise-disjoint convex hulls that cover S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. K. Agarwal. Ray shooting and other applications of spanning trees with low stabbing number. SIAM J. Comput., 21:540–570, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. Theory Appl., 21:39–61, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Aggarwal, D. Coppersmith, S. Khanna, R. Motwani, and B. Schieber. The angular-metric traveling salesman problem. In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pages 221–229, 1997.

    Google Scholar 

  4. O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumerating order types for small point sets with applications. In Proc. 17th Annu. ACM Sympos.Comput. Geom., 2001, pp. 11–18.

    Google Scholar 

  5. O. Aichholzer and H. Krasser. The point set order type data base: a collection of applications and results. In Proc. 13th Canad. Conf. Comput. Geom., Waterloo, Canada, 2001, pp. 17–20.

    Google Scholar 

  6. [6] O. Aichholzer and H. Krasser. Personal communication, 2001. 154 E.M. Arkin et al.

    Google Scholar 

  7. N. Amenta, M. Bern, and D. Eppstein. The crust and the ¦Â-skeleton: Combinatorial curve reconstruction. Graphical Models and Image Processing, 60:125–135, 1998.

    Article  Google Scholar 

  8. E. M. Arkin, S. P. Fekete, F. Hurtado, J. S. B. Mitchell, M. Noy, V. Sacristán, and S. Sethia. On the reflexivity of point sets. arXiv:cs.CG/0210003, 2002.

    Google Scholar 

  9. T. Auer and M. Held. Heuristics for the generation of random polygons. In Proc. 8th Canad. Conf. Comput. Geom., pages 38–43, 1996.

    Google Scholar 

  10. [10] B. Chazelle. Computational geometry and convexity. Ph.D. thesis, Dept. Comput. Sci., Yale Univ., New Haven, CT, 1979. Carnegie-Mellon Univ. Report CS-80–150.

    Google Scholar 

  11. B. Chazelle. On the convex layers of a planar set. IEEE Trans. Inform. Theory, IT-31(4):509–517, July 1985.

    Google Scholar 

  12. T. K. Dey and P. Kumar. A simple provable algorithm for curve reconstruction. In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, pages 893–894, Jan. 1999.

    Google Scholar 

  13. T. K. Dey, K. Mehlhorn, and E. A. Ramos. Curve reconstruction: Connecting dots with good reason. In Proc. 15th Annu. ACM Sympos. Comput. Geom., pages 197–206, 1999.

    Google Scholar 

  14. D. P. Dobkin, H. Edelsbrunner, and M. H. Overmars. Searching for empty convex polygons. Algorithmica, 5:561–571, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463–470, 1935.

    MathSciNet  MATH  Google Scholar 

  16. P. Erdös and G. Szekeres. On some extremum problem in elementary geometry. Ann. Univ. Sci. Budapest, 3–4:3–4, 1960.

    Google Scholar 

  17. [17] J. Erickson. Generating random simple polygons.http://compgeom.cs.uiuc.edu/~jeffe/open/randompoly.html/~jeffe/open/randompoly.html

  18. S. P. Fekete and G. J. Woeginger. Angle-restricted tours in the plane. Comput. Geom. Theory Appl, 8(4):195–218, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. García, M. Noy, and J. Tejel. Lower bounds for the number of crossing-free subgraphs of Kn. In Proc. 7th Canad. Conf. Comput. Geom., pages 97–102, 1995.

    Google Scholar 

  20. J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a walk. J. Algorithms, 18:403–431, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Hertel and K. Mehlhorn. Fast triangulation of the plane with respect to simple polygons. Inform. Control, 64:52–76, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Horton. Sets with no empty convex 7-gons. Canad. Math. Bull., 26:482–484, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  23. [] K. Hosono, D. Rappaport, and M. Urabe. On convex decompositions of points. In Proc. Japanese Conf. on Discr. Comp. Geom. (2000), Vol 2098 of Lecture Notes Comput. Sci., pages 149–155. Springer-Verlag, 2001.

    Google Scholar 

  24. [] K. Hosono and M. Urabe. On the number of disjoint convex quadrilaterals for a planar point set. Comp. Geom. Theory Appl., 20:97–104, 2001. Reflexivity of Point Sets 155

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Hurtado and M. Noy. Triangulations, visibility graph and reflex vertices of a simple polygon. Comput. Geom. Theory Appl., 6:355–369, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. M. Keil. Polygon decomposition. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 491–518. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

    Chapter  Google Scholar 

  27. J. O’Rourke. Computational Geometry in C. Cambridge University Press, 2nd edition, 1998.

    Google Scholar 

  28. J. Pach (ed.). Discrete and Computational Geometry, 19, Special issue dedicated to Paul Erdös, 1998.

    Google Scholar 

  29. E. Rivera-Campo and J. Urrutia. Personal communication, 2001.

    Google Scholar 

  30. M. Urabe. On a partition into convex polygons. Discrete Appl. Math., 64:179–191, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Urabe. On a partition of point sets into convex polygons. In Proc. 9 th Canad. Conf. Comput. Geom., pages 21–24, 1997.

    Google Scholar 

  32. M. Urabe. Partitioning point sets into disjoint convex polytopes. Comput. Geom. Theory Appl., 13:173–178, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  33. [] E. Welzl. Geometric graphs with small stabbing numbers: Combinatorics and applications. In Proc. 9th Internat. Conf. Fund. Comput. Theory, Lecture Notes Comput. Sci., Springer-Verlag, 1993.

    Google Scholar 

  34. C. Zhu, G. Sundaram, J. Snoeyink, and J. S. B. Mitchell. Generating random polygons with given vertices. Comput. Geom. Theory Appl., 6:277–290, 1996.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arkin, E.M. et al. (2003). On the Reflexivity of Point Sets. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds) Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55566-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55566-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62442-1

  • Online ISBN: 978-3-642-55566-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics