Skip to main content

Computing the Hausdorff Distance of Geometric Patterns and Shapes

  • Chapter
Discrete and Computational Geometry

Part of the book series: Algorithms and Combinatorics ((AC,volume 25))

Abstract

A very natural distance measure for comparing shapes and patterns is the Hausdorff distance. In this article we develop algorithms for computing the Hausdorff distance in a very general case in which geometric objects are represented by finite collections of k-dimensional simplices in d-dimensional space. The algorithms are polynomial in the size of the input,a ssuming d is a constant. In addition,w e present more efficient algorithms for special cases like sets of points,or line segments,or triangulated surfaces in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. K. Agarwal,B. Aronov, and M. Sharir Computing envelopes in four dimensions with applications SIAM J. Comput.,26:1714–1732, 1997

    MathSciNet  MATH  Google Scholar 

  2. P. K. Agarwal, J. Matousek, and S. Suri Farthest neighbors, maximum spanning trees and related problems in higher dimensions Comput. Geom. Theory Appl.,1(4):189–201, 1992

    MathSciNet  MATH  Google Scholar 

  3. P. K. Agarwal and M. Sharir Efficient randomized algorithms for some geometric optimization problems Discrete Comput. Geom.,16:317–337, 1996

    MathSciNet  MATH  Google Scholar 

  4. P. K. Agarwal and M. Sharir Motion planning of a ball amid polyhedral obstacles in three dimensions In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms,pages 21–30, 1999 76 H. Alt et al.

    MathSciNet  Google Scholar 

  5. P. K. Agarwal and M. Sharir Pipes,cigars, and kreplach: The union of Minkowski sums in three dimensions In Proc. 15th Annu. ACM Sympos. Comput. Geom.,pages 143–153, 1999

    Google Scholar 

  6. H. Alt, B. Behrends, and J. Blomer Approximate matching of polygonal shapes Ann. Math. Artif. Intell.,13:251–266, 1995

    MathSciNet  MATH  Google Scholar 

  7. H. Alt and L. J. Guibas Discrete geometric shapes: Matching,in terpolation, an d approximation In J.-R. Sack and J. Urrutia,editors, Handbook ofCom putational Geometry,pages 121–153. Elsevier Science Publishers B.V. North-Holland,A msterdam, 2000

    Chapter  Google Scholar 

  8. M. J. Atallah A linear time algorithm for the Hausdorff distance between convex polygons Inform. Process. Lett.,17:207–209, 1983

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir A singly-exponential stratification scheme for real semi-algebraic varieties and its applications Theoret. Comput. Sci.,84:77–105, 1991

    MATH  Google Scholar 

  10. B. Chazelle and M. Sharir An algorithm for generalized point location and its application J. Symbolic Comput.,10:281–309, 1990

    Article  MathSciNet  MATH  Google Scholar 

  11. K. L. Clarkson and P. W. Shor Applications of random sampling in computational geometry,I I Discrete Comput. Geom.,4:387–421, 1989

    MathSciNet  MATH  Google Scholar 

  12. G. E. Collins Quantifier elimination for real closed fields by cylindrical algebraic decomposition In Proc. 2nd GI Conference on Automata Theory and Formal Languages,v olume 33 of Lecture Notes Comput. Sci.,p ages 134.183 Springer-Verlag,1975

    Google Scholar 

  13. M. Godau On the complexity ofm easuring the similarity between geometric objects in higher dimensions PhD thesis,De partment of Computer Science, Freie Universitt Berlin,1999

    Google Scholar 

  14. V. Koltun Almost tight upper bounds for vertical decompositions in four dimensions In Proc. 42nd Annu. IEEE Sympos. Found. Comput. Sci.,2001

    Google Scholar 

  15. J. Matousek and O. Schwarzkopf On ray shooting in convex polytopes Discrete Comput. Geom.,10(2):215–232, 1993

    MathSciNet  MATH  Google Scholar 

  16. M. Sharir and P. K. Agarwal Davenport-Schinzel Sequences and Their Geometric Applications Cambridge University Press,N ew York, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alt, H., Braß, P., Godau, M., Knauer, C., Wenk, C. (2003). Computing the Hausdorff Distance of Geometric Patterns and Shapes. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds) Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55566-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55566-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62442-1

  • Online ISBN: 978-3-642-55566-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics