Skip to main content

Some Recent Quantitative and Algorithmic Results in Real Algebraic Geometry

  • Chapter
Book cover Discrete and Computational Geometry

Part of the book series: Algorithms and Combinatorics ((AC,volume 25))

  • 1509 Accesses

Abstract

This paper offers a short survey of two topics. In the first section we describe

a new bound on the Betti numbers of semi-algebraic sets whose proof rely on

the Thom-Milnor bound for algebraic sets and the Mayer-Vietoris long exact

sequence. The second section describes the best complexity results and practical

implementations currently available for finding real solutions of systems of

polynomial equations and inequalities. In both sections, the consideration of

critical points will play a key role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon The number of polytopes, configurations and real matroids. Mathematika, 33, 62–71 (1986).

    Article  Google Scholar 

  2. P. Aubry, F. Rouillier, M. Safey El Din Real solving for real algebraic varieties defined by several equations. (2000), submitted.

    Google Scholar 

  3. S. Basu, R. Pollack, M.-F. Roy, On the number of cells defined by a family of polynomials on a variety. Mathematika, 43, 120–126 (1996).748 M.-F. Roy

    Article  MathSciNet  MATH  Google Scholar 

  4. S.Basu, R. Pollack, M.-F. Roy, On the Combinatorial and Algebraic Complexity of Quantifier Elimination. Journal of the ACM, 43, 1002–1045 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  5. [5]S. Basu, R. Pollack, M.-F. Roy, On Bounding the Betti Numbers of the Connected Components Defined by a Set of Polynomials and of Closed Semialgebraic Sets. In preparation.

    Google Scholar 

  6. [6]S. Basu, R. Pollack, M.-F. Roy, Algorithms in real algebraic geometry. Book in preparation.

    Google Scholar 

  7. [7]J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry (second edition, Springer-Verlag

    Google Scholar 

  8. J. Canny, The Complexity of Robot Motion Planning. MIT Press (1987).

    Google Scholar 

  9. J. Canny, Some Algebraic and Geometric Computations in PSPACE. Proc.Twentieth ACM Symp. on Theory of Computing, 460–467 (1988).

    Google Scholar 

  10. G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Lect. Notes in Comp. Sci., 33, 515–532. Springer-Verlag (1975).

    Google Scholar 

  11. M. Coste,Effective semi-algebraic geometry. Lect. Notes in Comp. Sci., 391,1–27. Springer-Verlag (1989).

    Article  Google Scholar 

  12. [12] L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, Symbolic recipes for polynomial system solving. In: Some tapas for computer algebra, A. Cohen ed.Springer, 34–65 (1999).

    Google Scholar 

  13. [13] L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, G. Trujillo, Symbolic recipes for real solutions. In: Some tapas for computer algebra, A. Cohen ed. Springer, 121–167 (1999).

    Google Scholar 

  14. D. G rigor’ev, N. Vorobjov, Solving Systems of Polynomial Inequalities in Subexponential Time. J. Symbolic Comput., 5, 37–64, (1988).

    Article  MathSciNet  Google Scholar 

  15. J. Heintz, T. Recio, M.-F. Roy, Algorithms in real algebraic geometry and applications to computational geometry. Discrete and Computational Geometry:Papers from the DIMACS Special Year. DIMACS series in Discrete Mathematics and Theoretical Computer Science AMS-ACM, 6, 137–163 (1991).

    MathSciNet  Google Scholar 

  16. J. Heintz, M.-F. Roy, P. Solerno, On the Complexity of Semi-Algebraic Sets. Proc. IFIP 89, San Francisco, 293–298. North-Holland (1989).

    Google Scholar 

  17. J. Milnor, Morse Theory, Annals of Mathematical Studies, Princeton University Press (1963).

    MATH  Google Scholar 

  18. J. Milnor, On the Betti numbers of real algebraic varieties. Proc. AMS, 15,275–280 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  19. O. A. Oleinick, Estimates on the Betti numbers of real algebraic hypersurfaces.Mat. Sb., 28 (70), 635–640 (1951).

    Google Scholar 

  20. I. Petrowsky, On the topology of real plane algebraic curves. An. Math., 39(1), 187–209, (1938).

    MathSciNet  Google Scholar 

  21. R. Pollack, M.-F. Roy, On the number of cells defined by a set of polynomials.C. R. Acad. Sci. Paris, 316, 573–577 (1993).

    MathSciNet  MATH  Google Scholar 

  22. J. Renegar, On the computational complexity and geometry of the first order theory of the reals. J. of Symbolic Comput.,13 (3), 255–352 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Renegar, Recent progress on the complexity of the decision problem for the reals. Discrete and Computational Geometry: Papers from the DIMACS Special Year. DIMACS series in Discrete Mathematics and Theoretical Computer Science, AMS-ACM., 6, 287–308 (1991).

    MathSciNet  Google Scholar 

  24. F. Rouillier, Algorithmes efficaces pour l’´etude des z´eros r´eels des syst`emes polynomiaux. Th`ese, Universit´e de Rennes I (1996).

    Google Scholar 

  25. F. Rouillier, Solving zero-dimensional systems through the rational univariate representation. Journal of Applicable Algebra in Engineering, Communication and Computing,9, 433–461 (1999).

    MathSciNet  MATH  Google Scholar 

  26. F. Rouillier, Real Solving,http://www.loria.fr/rouillie/rouillie

  27. M.-F. Roy Basic algorithms in real algebraic geometry: from Sturm theorem to the existential theory of reals,, Lectures on Real Geometry in memoriam of Mario Raimondo, de Gruyter Expositions in Mathematics, 1–67 (1996).

    Google Scholar 

  28. M.-F. Roy, N. Vorobjov, Computing the complexification of a semi-algebraic set, Math. Zeitschrift 239, 131–142 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Safey El din R´esolution r´eelle des syst`emes polynomiaux en dimension positive. Th`ese, Universit´e Paris VI (2001).

    Google Scholar 

  30. [30] R. Thom, Sur l’homologie des vari´et´es r´eelles. In: Differential and combinatorial topology, 255–265. Princeton University Press (1965).

    Google Scholar 

  31. [31] R. J. Walker, Algebraic Curves. Princeton University Press (1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roy, MF. (2003). Some Recent Quantitative and Algorithmic Results in Real Algebraic Geometry. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds) Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55566-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55566-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62442-1

  • Online ISBN: 978-3-642-55566-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics