Skip to main content

Note on the Chromatic Number of the Space

  • Chapter

Part of the Algorithms and Combinatorics book series (AC,volume 25)

Abstract

The chromatic number of the space is the minimum number of colors needed to color the points of the space so that every two points unit distance apart have different colors. We show that this number is at most 15, improving the best known previous bound of 18.

References

Keywords

  • Convex Hull
  • Convex Body
  • Chromatic Number
  • Discrete Mathematic
  • Hungarian Academy

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-55566-4_32
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-55566-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   259.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bóna, G. Tóth: A Ramsey-type problem on right-angled triangles in space, Discrete Mathematics Selected papers in honour of Paul Erd¡§os onthe occasion of his 80th birthday (Keszthely, 1993) 150 (1996), 61¨C67.

    MATH  Google Scholar 

  2. K. B. Chilakamarri: The unit-distance graph problem: a brief survey and some new results, Bull. Inst. Combin. Appl. 8 (1993), 39¨C60.

    MathSciNet  MATH  Google Scholar 

  3. D. Coulson: An 18-colouring of 3-space omitting distance one, Discrete Mathematics 170 (1997), 241¨C247.

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. D. Coulson: An 15-colouring of 3-space omitting distance one, Discrete Mathematics 256 (2002), 83¨C90.

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. P. Frankl, R. M. Wilson: Intersection theorems with geometric consequences, Combinatorica 1 (19981), 357¨C368.

    MathSciNet  CrossRef  Google Scholar 

  6. D. G. Larman, C. A. Rogers: The realization of distances within sets in Euclidean space, Mathematika 19 (1972), 1¨C24.

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. P. McMullen: Convex bodies which tile space by translation, Mathematika 27 (1980), 113¨C121.

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. O. Nechushtan: A note on the space chromatic number, Discrete Mathematics 256 (2002), 499¨C507.

    MathSciNet  MATH  CrossRef  Google Scholar 

  9. D. E. Raiskii: The Realization of all distances in a decomposition of the space Rn into n + 1 parts, Math. Notes 7 (1970), 194¨C196.

    MathSciNet  CrossRef  Google Scholar 

  10. L. A. Sz¡äekely, N. C. Wormald: Bounds on the measurable chromatic number of Rn, Discrete Mathematics 75 (1989), 343–372.

    MathSciNet  CrossRef  Google Scholar 

  11. A. Soifer: Chromatic number of the plane: A historical essay, Geombinatorics 1 (1991), 13¨C15.

    Google Scholar 

  12. G. Ziegler: Lectures on Polytopes Springer-Verlag, New York, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radoičić, R., Tóth, G. (2003). Note on the Chromatic Number of the Space. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds) Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55566-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55566-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62442-1

  • Online ISBN: 978-3-642-55566-4

  • eBook Packages: Springer Book Archive