Note on the Chromatic Number of the Space

  • Radoš Radoičić
  • Géza Tóth
Part of the Algorithms and Combinatorics book series (AC, volume 25)


The chromatic number of the space is the minimum number of colors needed to color the points of the space so that every two points unit distance apart have different colors. We show that this number is at most 15, improving the best known previous bound of 18.



Convex Hull Convex Body Chromatic Number Discrete Mathematic Hungarian Academy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BT96.
    M. Bóna, G. Tóth: A Ramsey-type problem on right-angled triangles in space, Discrete Mathematics Selected papers in honour of Paul Erd¡§os onthe occasion of his 80th birthday (Keszthely, 1993) 150 (1996), 61¨C67.zbMATHGoogle Scholar
  2. C93.
    K. B. Chilakamarri: The unit-distance graph problem: a brief survey and some new results, Bull. Inst. Combin. Appl. 8 (1993), 39¨C60.MathSciNetzbMATHGoogle Scholar
  3. C97.
    D. Coulson: An 18-colouring of 3-space omitting distance one, Discrete Mathematics 170 (1997), 241¨C247.MathSciNetzbMATHCrossRefGoogle Scholar
  4. C02.
    D. Coulson: An 15-colouring of 3-space omitting distance one, Discrete Mathematics 256 (2002), 83¨C90.MathSciNetzbMATHCrossRefGoogle Scholar
  5. FW81.
    P. Frankl, R. M. Wilson: Intersection theorems with geometric consequences, Combinatorica 1 (19981), 357¨C368.MathSciNetCrossRefGoogle Scholar
  6. LR72.
    D. G. Larman, C. A. Rogers: The realization of distances within sets in Euclidean space, Mathematika 19 (1972), 1¨C24.MathSciNetzbMATHCrossRefGoogle Scholar
  7. M80.
    P. McMullen: Convex bodies which tile space by translation, Mathematika 27 (1980), 113¨C121.MathSciNetzbMATHCrossRefGoogle Scholar
  8. N00.
    O. Nechushtan: A note on the space chromatic number, Discrete Mathematics 256 (2002), 499¨C507.MathSciNetzbMATHCrossRefGoogle Scholar
  9. R70.
    D. E. Raiskii: The Realization of all distances in a decomposition of the space Rn into n + 1 parts, Math. Notes 7 (1970), 194¨C196.MathSciNetCrossRefGoogle Scholar
  10. SW89.
    L. A. Sz¡äekely, N. C. Wormald: Bounds on the measurable chromatic number of Rn, Discrete Mathematics 75 (1989), 343–372.MathSciNetCrossRefGoogle Scholar
  11. S91.
    A. Soifer: Chromatic number of the plane: A historical essay, Geombinatorics 1 (1991), 13¨C15.Google Scholar
  12. Z98.
    G. Ziegler: Lectures on Polytopes Springer-Verlag, New York, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Radoš Radoičić
    • 1
  • Géza Tóth
    • 1
    • 2
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Hungarian Academy of SciencesA. Rényi Institute of MathematicsBudapestHungary

Personalised recommendations