Dense Packings of Congruent Circles in Rectangles with a Variable Aspect Ratio

  • Boris D. Lubachevsky
  • Ronald Graham
Part of the Algorithms and Combinatorics book series (AC, volume 25)

Abstract

We use computational experiments to find the rectangles of minimum area into which a given number n of non-overlapping congruent circles can be packed. No assumption is made on the shape of the rectangles. Most of the packings found have the usual regular square or hexagonal pattern. However, for 1495 values of n in the tested range n≤ 5000, specifically, for n = 49, 61, 79, 97, 107, …4999, we prove that the optimum cannot possibly be achieved by such regular arrangements.The evidence suggests that the limiting height-to-width ratio of rectangles containing an optimal hexagonal packing of circles tends to \( 2 - \sqrt 3 \) as n → ∞, if the limit exists.

Keywords

Hexagonal Shrinkage Assure Boris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Fejes-Toth, Lagerungen in der Ebene, auf der Kugel und im Raum,Springer-Verlag, Berlin, 1953, 197 pp.MATHGoogle Scholar
  2. J.H. Folkman and R. L. Graham, A packing inequality for compact convex subsets of the plane, Canad. Math. Bull. 12 (1969),745–752.MathSciNetMATHCrossRefGoogle Scholar
  3. Z.Füuredi, The densest packing of equal circles into a parallel strip.Discr. Comp. Geom.6 (1991), no. 2, 95–106.MathSciNetCrossRefGoogle Scholar
  4. R.L. Graham and B. D. Lubachevsky, Repeated Patterns of Dense Packings of Equal Disks in a Square, Electr. J. Combin. 3(1) (1996),#R16.Google Scholar
  5. B.D.Lubachevsky, How to simulate billiards and similar systems, J.Comp. Phys. 94 (1991), 2–283.MathSciNetCrossRefGoogle Scholar
  6. K. J. Nurmela and P. R. J. Östergård, Packing up to 50 equal circles in a square, Discr. Comp. Geom. 18 (1997), 111–120.MATHCrossRefGoogle Scholar
  7. K. J. Nurmela and P. R. J. Östergård, Optimal Packings of Equal Circles in na Square, in: Combinatorics, Graph Theory, and Algorithms,Vol. II, Y. Alavi, D.R. Lick, and Schwenk (eds.), New Issues Press,Kalamazoo 1999Google Scholar
  8. K. J. Nurmela and P. R. J. Östergård, More optimal packings of equal circles in a square, Discr. Comp. Geom. 22 (1999), 439–457.MATHCrossRefGoogle Scholar
  9. K. J. Nurmela, P. R. J. Östergård and R. aus dem Spring, Asymptotic behavior of optimal circle packings in a square, Canad. Math. Bull. 42 (1999), 380–385.MathSciNetMATHCrossRefGoogle Scholar
  10. N. Oler, A finite packing problem, Canad. Math. Bull. 4 (1961), 153–155.MathSciNetMATHCrossRefGoogle Scholar
  11. M. Ruda, The packing of circles in rectangles. (Hungarian. English summary) Magyar Tud. Akad. Mat. Fiz. Tud. Oszt., Köozl., 19 (1970), 73–87.MathSciNetMATHGoogle Scholar
  12. A. Thue, Über die dichteste Zussamenstellung von kongruenten Kreisen in einer Ebene, Christiania Vid. Selsk. Skr. no. 1 (1910), 3–9.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Boris D. Lubachevsky
  • Ronald Graham

There are no affiliations available

Personalised recommendations